• 제목/요약/키워드: implant dentistry

검색결과 3,855건 처리시간 0.029초

Effect of bone quality and implant surgical technique on implant stability quotient (ISQ) value

  • Yoon, Hong-Gi;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Lee, Su-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권1호
    • /
    • pp.10-15
    • /
    • 2011
  • PURPOSE. This study investigated the influence of bone quality and surgical technique on the implant stability quotient (ISQ) value. In addition, the influence of interfacial bone quality, directly surrounding the implant fixture, on the resonance frequency of the structure was also evaluated by the finite element analysis. MATERIALS AND METHODS. Two different types of bone (type 1 and type 2) were extracted and trimmed from pig rib bone. In each type of bone, the same implants were installed in three different ways: (1) Compaction, (2) Self-tapping, and (3) Tapping. The ISQ value was measured and analyzed to evaluate the influence of bone quality and surgical technique on the implant primary stability. For finite element analysis, a three dimensional implant fixture-bone structure was designed and the fundamental resonance frequency of the structure was measured with three different density of interfacial bone surrounding the implant fixture. RESULTS. In each group, the ISQ values were higher in type 1 bone than those in type 2 bone. Among three different insertion methods, the Tapping group showed the lowest ISQ value in both type 1 and type 2 bones. In both bone types, the Compaction groups showed slightly higher mean ISQ values than the Self-tapping groups, but the differences were not statistically significant. Increased interfacial bone density raised the resonance frequency value in the finite element analysis. CONCLUSION. Both bone quality and surgical technique have influence on the implant primary stability, and resonance frequency has a positive relation with the density of implant fixture-surrounding bone.

Conical connection 임프란트(Ankylos dental implant)에 대한 후향적 임상연구 (Retrospective study of conical connection dental implant (Ankylos dental Implant).)

  • 양병은;송상훈;심혜원;이상민;김성곤
    • 대한치과의사협회지
    • /
    • 제44권11호통권450호
    • /
    • pp.739-747
    • /
    • 2006
  • Objectives. The standardization of connection between fixture and abutment has not been defined. The success of dental implants was not always depends on connection. However, the connection mechanism is one of the most important things for dental implant treatment success. Most implant systems are very comparable in their design and engineering. They share many common characteristics and have similar strengths and weaknesses. Their significant weaknesses are connection, microgap and the resulting micromovement allowing bacterial contamination and bone loss. In the present study, we investigated the clinical performance of Ankylos implant (conical connection implant) Patients and Methods. The clinical performance of conical connection implant was studied under well-controlled clinical conditions. A total of 133 conical connection implants were placed in 50 patients from April 2005 to March 2006. The mean follow-up loading period of implants which was considered successful was 220$\pm$29 days. We recorded the age, sex, installation site, reason of edentulous region, bone density of installation site, diameter and length of dental implants and periods from installation to uncovering surgery using patients medical chart. Results Four Ankylos implants were lost during pre-loading period. 129 implants provided excellent clinical performance during 220$\pm$29 days on an average. The short-term success rate of this conical connection implant system was 96.99%.

  • PDF

성견에서 거친 표면을 가지는 임플란트에서 골형성에 관한 조직형태계측학적인 평가 (HISTOMORPHOMETRIC EVALUATION OF OSTEOGENESIS WITH BRUSHITE IMPLANT SURFACES IN DOGS)

  • 문철웅;김수관;김학균;문성용;임성철;오지수;백성문
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.150-157
    • /
    • 2008
  • This study evaluated the influence of smooth and brushite-coated implant surfaces in dogs. The first through fourth mandibular premolars were extracted from eight young adult dogs. Twelve weeks after extraction. implantation was performed at the extraction sites. In total, 40 implant fixtures were implanted in the dog mandibles. Twenty machined implants served as controls and twenty brushite-coated surfaces served as tests. Dogs were sacrificed 2 and 4 weeks after implantation. The hemi-mandibles were obtained and processed histologically to obtain non-decalcified sections. Longitudinal sections of each implant were made and analyzed using light microscopy. The overall implant success rate was 83.3%. Histomorphometrically. the experimental group had a better percentage of bone-implant contact than the control group (p<0.05) and there was a significant difference between the 2- and 4-week groups after implantation (p<0.05) Our results suggest that the implant surface morphology influences the increase in peri-implant osteogenesis in the early period of peri-implant healing.

Use of polyaryletherketone (PAEK) based polymer for implant-supported telescopic overdenture: A case report

  • Park, Chan;Jun, Dae-Jeon;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권1호
    • /
    • pp.74-76
    • /
    • 2017
  • Although many prosthetic materials exist for fabrication of implant-supported telescopic overdentures, available materials have not been thoroughly evaluated from a functional standpoint. This case report describes the use of polyaryletherketone (PAEK) based polymer for an implant-supported telescopic overdenture, a seldom used material in dentistry. This material is lighter than traditional materials, can accommodate changes in retentive forces, and is an easily retrievable by CAD/CAM fabrication. This case highlights the possibility of using new polymer materials for implant-supported telescopic overdentures.

CORRELATION ASSESSMENT BETWEEN RESONANCE FREQUENCY ANALYSIS AND RADIOGRAPHIC METHOD ACCORDING TO PERI-IMPLANT BONE CHANGE

  • Lee Mi-Ran;Cho Lee-Ra;Yi Yang-Jin;Choi Hang-Moon;Park Chan-Jin
    • 대한치과보철학회지
    • /
    • 제43권6호
    • /
    • pp.736-744
    • /
    • 2005
  • Statement of problem. Initial stability of implant is an important factor for predicting osseointegration. It requires a rapid, non-invasive, user-friendly technique to frequently assess the implant stability and the degree of osseointegration. Purpose. The aim of this study was to evaluate the correlation between the resonance frequency analysis (RFA) and the radiographic method for peri-implant bone change under in vitro conditions. Material and Method. Twenty implants of 3.75 mm in diameter(Neoplant, Neobiotech, Korea) were used. To simulate peri-implant bone change, 2 mm-deep $45^{\circ}$ range horizontal defect and 2 mm-deep $90^{\circ}$ range horizontal defect area were serially prepared perpendicular to the X-ray beam after conventional implant insertion. Customized film holding device was fabricated to standardize the projection geometry for serial radiographs of implants and direct digital image was obtained. ISQ values and gray values inside threads were measured before and after peri-implant bone defect preparation. Results. Within a limitation of this study, ISQ value of resonance frequency analysis was changed according to peri-implant bone change (p<0.05) and gray value of radiographic method was changed according to peri-implant bone change (p<0.05). There was no correlation between the ISQ value and the gray value for peri-implant bone change (p>0.05). But, in horizontal defect condition, relatively positive correlation were between ISQ and gray values(r=0.663). Conclusion. This results provided a possibility that peri-implant bone change may be evaluated by both RFA and radiographic method.

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

  • Mishra, Manish;Ozawa, Shogo;Masuda, Tatsuhiko;Yoshioka, Fumi;Tanaka, Yoshinobu
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.140-144
    • /
    • 2011
  • PURPOSE. Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.

Er:YAG 레이저 조사가 산화 티타늄 블라스팅 임플란트 표면 미세 구조 및 거칠기에 미치는 영향 (The effect of Er:YAG laser irradiation on the surface microstructure and roughness of $TiO_2$ implant)

  • 안장혁;권영혁;박준봉;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제38권1호
    • /
    • pp.67-74
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the effect of Er:YAG laser on microstructure and roughness of $TiO_2$ blasting implant surface. Materials and Methods: Ten $TiO_2$ blasting implant were used in this experiment. One implant was control group, and nine $TiO_2$ blasting implant surfaces were irradiated with Er:YAG laser under 100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse condition for 1 min, 1.5 min, and 2 min respectively. Optical interferometer and scanning electron microscopy was utilized to measure roughness and microstructure of specimens. Results: The surface roughness was decreased after Er:YAG laser irradiation in all groups, but there was no significant difference. 100 mJ/pulse and 140 mJ/pulse group did not alter the $TiO_2$ blasting implant surface in SEM study while 180 mJ/pulse group altered the $TiO_2$ blasting implant surface. Implant surfaces showed melting, microfracture and smooth surface in 180 mJ/pulse group. Conclusion: Detoxification of implant surface using Er:YAG laser must be irradiated with proper energy output and irradiation time to prevent implant surface alteration.

하악피개의치에서 임플랜트의 식립각도에 따른 칸틸레버 길이의 감소효과가 응력분포 양상에 미치는 영향 -삼차원 유한요소법을 이용한 분석- (FINITE ELEMENT ANALYSIS OF THE EFFECT OF CANTILEVER AND IMPLANT ORIENTATION ON STRESS DISTRIBUTION IN A MANDIBULAR IMPLANT-SUPPORTED BAR OVERDENTURE)

  • 박준수;이성복;권긍록;우이형
    • 대한치과보철학회지
    • /
    • 제45권4호
    • /
    • pp.444-456
    • /
    • 2007
  • Statement of problem: Implant inclination and cantilever loading increse loads distributed to implants, potentially causing biomechanical complications. Controversy exists regarding the effect of the intentionally distal-inclined implant for the reduction of the cantilever length. Purpose: This study investigated the stress distribution at the bone/implant interface and prostheses with 3D finite element stress analysis by using four different cantilever lengths and implant inclinations in a mandibular implant-supported bar overdenture. Material and methods: Four 3-D finite element models were created in which 4 implants were placed in the interforaminal area and had four different cantilver lengths(10, 6.9, 4 and 1.5mm) and distal implant inclinations$(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ respectively. Vortical forces of 120N and oblique forces of 45N were applied to the molar area. Stress distribution in the bone around the implant was analysed under different distal implant inclinations. Results: Analysis of the von Mises stresses for the bone/implant interfaces and prostheses revealed that the maximum stresses occurred at the most distal bone/implant interface and the joint of bar and abutment, located on the loaded side and significantly incresed with the implant inclinations, especially over $45^{\circ}$. Conclusion: Within the limitations of this study, it was suggested that too much distal inclination over 45 degrees can put the implant at risk of overload and within the dimension of the constant sum of a anterior-posterior spread and cantilever length, a distal implant inclination compared to cantilever length had the much larger effect on the stress distribution at the bone/implant interface.

Maxillary anterior single implant prosthesis ; a clinical case

  • Kim Seung-June;Kwon Kung-Rock;Lee Sung-Bok;Woo Yi-Hyung;Choi Dae-Gyun;Choi Boo-Byung
    • 대한치과보철학회지
    • /
    • 제39권3호
    • /
    • pp.306-312
    • /
    • 2001
  • Achieving an aesthetic implant-supported restoration in the single tooth missing case can be challenging when the implant site is in e anterior region. The objective of this report is to focus on presurgical evaluation of implant site and systematic development of related prosthetic modalities. An accurate diagnostic evaluation, a systematically developed pesurgical plan, and knowledge and clinical skill of the various related therapeutic modalities are indispensible. Collection of patient's information, appropriate abutment selection, soft tissue contour, implant axis, and occlusion need to be discussed for aesthetic clinical outcome. For aesthetic restoration, such as surgical guide stent for precise implant positioning customized provisional restoration for development of optimal periimplant soft tissue contours, and fabrication customized abutment (mesiostructure) for veriable emergence profile, are recommended.

  • PDF

성견에서 즉시 부하 후 임프란트 안정성 평가 : 임상적, 방사선학적 연구 (ASSESSMENT OF IMPLANT STABILITY AFTER IMMEDIATE LOADING IN DOGS : CLINICAL AND RADIOGRAPHIC STUDY)

  • 이주영;김수관;김상호;김완배
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권2호
    • /
    • pp.131-139
    • /
    • 2005
  • The therapeutic goal of implant dentistry is not merely tooth replacement but total oral rehabilitation. Considering dental implants as a treatment option can be provided patients with positive, long-term results. Implant dentistry has gone through many phases over the years. Modern technology and design allows us to predictably place our dental implants often load the implants at the time of placement. The purpose of this study is to evaluate the implant stability after immediate loading in dogs. The control group was performed delay loading and experimental group was immediate loading. Each group was measured periotest value(PTV) to evaluate clinical mobility and performed radiographic examination to evaluate marginal bone loss. Statistically significant difference was not founded in control group between experimental group in PTV(P>0.05) and marginal bone loss(P>0.05). Finally, implant stability after immediate loading was similar to delay loading implant.