• Title/Summary/Keyword: impact score normalization

Search Result 4, Processing Time 0.019 seconds

Quantifying Quality: Research Performance Evaluation in Korean Universities

  • Yang, Kiduk;Lee, Hyekyung
    • Journal of Information Science Theory and Practice
    • /
    • v.6 no.3
    • /
    • pp.45-60
    • /
    • 2018
  • Research performance evaluation in Korean universities follows strict guidelines that specify scoring systems for publication venue categories and formulas for co-authorship credit allocation. To find out how the standards differ across universities and how they differ from bibliometric research evaluation measures, this study analyzed 25 standards from major Korean universities and rankings produced by applying standards and bibliometric measures such as publication and citation counts, normalized impact score, and h-index to the publication data of 195 tenure-track professors of library and information science departments in 35 Korean universities. The study also introduced a novel impact score normalization method to refine the methodology from prior studies. The results showed the university standards to be mostly similar to one another but quite different from citation-driven measures, which suggests the standards are not quite successful in quantifying the quality of research as originally intended.

Analysis of Business Performance of Local SMEs Based on Various Alternative Information and Corporate SCORE Index

  • HWANG, Sun Hee;KIM, Hee Jae;KWAK, Dong Chul
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.3
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose: The purpose of this study is to compare and analyze the enterprise's score index calculated from atypical data and corrected data. Research design, data, and methodology: In this study, news articles which are non-financial information but qualitative data were collected from 2,432 SMEs that has been extracted "square proportional stratification" out of 18,910 enterprises with fixed data and compared/analyzed each enterprise's score index through text mining analysis methodology. Result: The analysis showed that qualitative data can be quantitatively evaluated by region, industry and period by collecting news from SMEs, and that there are concerns that it could be an element of alternative credit evaluation. Conclusion: News data cannot be collected even if one of the small businesses is self-employed or small businesses has little or no news coverage. Data normalization or standardization should be considered to overcome the difference in scores due to the amount of reference. Furthermore, since keyword sentiment analysis may have different results depending on the researcher's point of view, it is also necessary to consider deep learning sentiment analysis, which is conducted by sentence.

A Study on Comparison of Normalization and Weighting Method for Constructing Index about Flood (홍수관련 지표 산정을 위한 표준화 및 가중치 비교 연구)

  • Baeck, Seung-Hyub;Choi, Si-Jung;Hong, Seung-Jin;Kim, Dong-Phil
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.411-426
    • /
    • 2011
  • The construction of composite indicators should be normalized and weighted to render them comparable and evaluable variables in the field, which undergoes absence of a distinct methodology and where the application of universally popular method is common. Constructing of indices does not compare and analyze applying various normalizing and weighting, but constructer generally use chosen method and develops indicators and indices in most research. In this study, indices are applied various normalization and weighting methods, thereby analyzing how much impact the index and identifying individual characteristics derive a more reasonable way to help other research in the future. 5 different methods of normalization and 4 different types of weights were compared and analyzed. There are different results depending applied normalized methods and Z-score method best reflects the characteristics of the variables. According to weighting methods, the calculated results show little difference, but the ranking results of indices did not changed significantly. It might be better to provide constructors with a set of normalization and weighting methods to reflect their characteristics in order to build flood indices through the result of this study.

Research on Local and Global Infrared Image Pre-Processing Methods for Deep Learning Based Guided Weapon Target Detection

  • Jae-Yong Baek;Dae-Hyeon Park;Hyuk-Jin Shin;Yong-Sang Yoo;Deok-Woong Kim;Du-Hwan Hur;SeungHwan Bae;Jun-Ho Cheon;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.41-51
    • /
    • 2024
  • In this paper, we explore the enhancement of target detection accuracy in the guided weapon using deep learning object detection on infrared (IR) images. Due to the characteristics of IR images being influenced by factors such as time and temperature, it's crucial to ensure a consistent representation of object features in various environments when training the model. A simple way to address this is by emphasizing the features of target objects and reducing noise within the infrared images through appropriate pre-processing techniques. However, in previous studies, there has not been sufficient discussion on pre-processing methods in learning deep learning models based on infrared images. In this paper, we aim to investigate the impact of image pre-processing techniques on infrared image-based training for object detection. To achieve this, we analyze the pre-processing results on infrared images that utilized global or local information from the video and the image. In addition, in order to confirm the impact of images converted by each pre-processing technique on object detector training, we learn the YOLOX target detector for images processed by various pre-processing methods and analyze them. In particular, the results of the experiments using the CLAHE (Contrast Limited Adaptive Histogram Equalization) shows the highest detection accuracy with a mean average precision (mAP) of 81.9%.