• Title/Summary/Keyword: impact imaging

Search Result 255, Processing Time 0.03 seconds

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

Combined Hepatocellular-Cholangiocarcinoma: Changes in the 2019 World Health Organization Histological Classification System and Potential Impact on Imaging-Based Diagnosis

  • Tae-Hyung Kim;Haeryoung Kim;Ijin Joo;Jeong Min Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1115-1125
    • /
    • 2020
  • Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a primary liver cancer (PLC) with both hepatocytic and cholangiocytic phenotypes. Recently, the World Health Organization (WHO) updated its histological classification system for cHCC-CCA. Compared to the previous WHO histological classification system, the new version no longer recognizes subtypes of cHCC-CCA with stem cell features. Furthermore, some of these cHCC-CCA subtypes with stem cell features have been recategorized as either hepatocellular carcinomas (HCCs) or intrahepatic cholangiocarcinomas (ICCs). Additionally, distinctive diagnostic terms for intermediate cell carcinomas and cholangiolocarcinomas (previous cholangiolocellular carcinoma subtype) are now recommended. It is important for radiologists to understand these changes because of its potential impact on the imaging-based diagnosis of HCC, particularly because cHCC-CCAs frequently manifest as HCC mimickers, ICC mimickers, or as indeterminate on imaging studies. Therefore, in this review, we introduce the 2019 WHO classification system for cHCC-CCA, illustrate important imaging features characteristic of its subtypes, discuss the impact on imaging-based diagnosis of HCC, and address other important considerations.

Nondestructive Contactless Sensing of Concrete Structures using Air-coupled Sensors

  • Shin, Sung-Woo;Hall, Kerry S.;Popovics, John S.
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • Recent developments in contactless, air-coupled sensing of seismic and ultrasonic waves in concrete structures are presented. Contactless sensing allows for rapid, efficient and consistent data collection over a large volume of material. Two inspection applications are discussed: air-coupled impact-echo scanning of concrete structures using seismically generated waves, and air-coupled imaging of internal damages in concrete using ultrasonic tomography. The first application aims to locate and characterize shallow delamination defects within concrete bridge decks. Impact-echo method is applied to scan defected concrete slabs using air coupled sensors. Next, efforts to apply air-coupled ultrasonic tomography to concrete damage imaging are discussed. Preliminary results are presented for air-coupled ultrasonic tomography applied to solid elements to locate internal defects. The results demonstrate that, with continued development, air-coupled ultrasonic tomography may provide improved evaluation of unseen material defects within structures.

Impact of aperture-thickness on the real-time imaging characteristics of coded-aperture gamma cameras

  • Park, Seoryeong;Boo, Jiwhan;Hammig, Mark;Jeong, Manhee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1266-1276
    • /
    • 2021
  • The mask parameters of a coded aperture are critical design features when optimizing the performance of a gamma-ray camera. In this paper, experiments and Monte Carlo simulations were performed to derive the minimum detectable activity (MDA) when one seeks a real-time imaging capability. First, the impact of the thickness of the modified uniformly redundant array (MURA) mask on the image quality is quantified, and the imaging of point, line, and surface radiation sources is demonstrated using both cross-correlation (CC) and maximum likelihood expectation maximization (MLEM) methods. Second, the minimum detectable activity is also derived for real-time imaging by altering the factors used in the image quality assessment, consisting of the peak-to-noise ratio (PSNR), the normalized mean square error (NMSE), the spatial resolution (full width at half maximum; FWHM), and the structural similarity (SSIM), all evaluated as a function of energy and mask thickness. Sufficiently sharp images were reconstructed when the mask thickness was approximately 2 cm for a source energy between 30 keV and 1.5 MeV and the minimum detectable activity for real-time imaging was 23.7 MBq at 1 m distance for a 1 s collection time.

Morphological variation of the velum in children and adults using magnetic resonance imaging

  • Kotlarek, Katelyn J.;Haenssler, Abigail E.;Hildebrand, Kori E.;Perry, Jamie L.
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.153-158
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate variations in velar shape according to age, sex, and race using magnetic resonance imaging (MRI). Materials and Methods: The study sample consisted of 170 participants (85 children, 85 adults) between 4 and 34 years of age. Velar morphology was visually classified using midsagittal MRI scans for each participant by 2 independent raters. Inter- and intra-rater reliability was assessed. Statistical analyses were performed to identify correlations of velar shape with sex, age, and race. Results: The most frequent velar shape was "butt" for both adults(41%) and children (58%) in this study. The least common shapes for adults were "leaf" and "S." The children did not exhibit any "leaf" or "straight" velar shapes. A statistically significant difference was noted for age with respect to velar shape (P=0.014). Sex and race were found to have no significant impact on velar shape in this study. Conclusion: When using MRI to evaluate velar morphology, the "butt" shape was most common in both children and adults. Velar shape varied significantly with age, while race and sex did not have a significant impact.

Impact of Low Versus Conventional Doses of Chemotherapy During Transcatheter Arterial Chemo-embolization on Serum Fibrosis Indicators and Survival of Liver Cancer Patients

  • Kong, Wei-Dong;Cao, Jian-Ming;Xu, Jian;Chen, Bo;Yang, Tao;Xu, Tan-Tan;Lu, Guang-Ming;Li, Jun;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4757-4761
    • /
    • 2012
  • Objectives: To explore the impact of low- vs conventional-dose chemotherapy via transcatheter arterial chemo-embolization (TACE) on serum fibrosis indicators and treatment efficacy of hepatocellular cancer patients (HCC). Materials and Methods: Patients fulfilling the eligibility criteria were assigned to TACE in Group A (with low-dose chemotherapy) or Group B (conventional-dose chemotherapy). Four serum fibrosis related indicators, hyaluronic acid(HA), human pro-collagen type-III (hPC-III), laminin (LN), and collagen type-IV(IV-C) before TACE were compared with the values 7 days after TACE. The response rate and survival time were also compared between the two groups. Results: Fifty patients with HCC were enrolled in this study, including 25 in Group A and 25 in Group B. No significant differences were detected between the two groups in the four indicators before TACE. After TACE, the value of the four serum indicators increased significantly in Group B. However, no significant differences regarding these four indicators were found in Group A after TACE. Significant differences were demonstrated between the two groups after TACE, but median survival time and 1 or 2 year overall survival rates did not differ (P>0.05). Conclusions: Low-, compared with conventional-dose chemotherapy exerts the same impact on the variation of fibrosis related indicators and has no influence on median survival time and survival rate after TACE in HCC patients.

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF