• 제목/요약/키워드: impact hammer

검색결과 242건 처리시간 0.023초

Dynamic compaction of cold die Aluminum powders

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid;Namazi, Nasir;Rahmanpoor, Ali
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.109-124
    • /
    • 2016
  • In this paper, process of dynamic powder compaction is investigated experimentally using impact of drop hammer and die tube. A series of test is performed using aluminum powder with different grain size. The energy of compaction of powder is determined by measuring height of hammer and the results presented in term of compact density and rupture stress. This paper also presents a mathematical modeling using experimental data and neural network. The purpose of this modeling is to display how the variations of the significant parameters changes with the compact density and rupture stress. The closed-form obtained model shows very good agreement with experimental results and it provides a way of studying and understanding the mechanics of dynamic powder compaction process. In the considered energy level (from 733 to 3580 J), the relative density is varied from 63.89% to 87.41%, 63.93% to 91.52%, 64.15% to 95.11% for powder A, B and C respectively. Also, the maximum rupture stress are obtained for different types of powder and the results shown that the rupture stress increases with increasing energy level and grain size.

금속 부품의 결함 판단을 위한 고유 주파수 분석 시스템 개발 (Development of the Natural Frequency Analysis System to Examine the Defects of Metal Parts)

  • 이충석;김진영;강준희
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.169-174
    • /
    • 2015
  • In this study, we developed a system to detect the various defects in the metallic objects using the phenomenon that the defects cause the changes of the natural resonant frequencies. Our system consists of a FFT Amp, an Auto Impact Hammer, a Hammer controller and a PC. Auto Impact Hammer creates vibrations in the metallic objects when tapped on the surface. These vibrational signals are converted to the voltage signals by an acceleration sensor attached to the metallic part surface. These analog voltage signals were fed into an ADC (analog-digital converter) and an FFT (fast fourier transform) conversion in the FFT Amp to obtain the digital data in the frequency domain. Labview graphical program was used to process the digital data from th FFT amp to display the spectrum. We compared those spectra with the standard spectrum to find the shifts in the resonant frequencies of the metal parts, and thus detecting the defects. We used PCB's acceleration sensor and TI's TMS320F28335 DSP (digital signal processor) to obtain the resolution of 2.93 Hz and to analyze the frequencies up to 44 kHz.

곡선보의 모우드 해석 (Modal Analysis of Curved Beam.)

  • 김영문;유기표
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.349-354
    • /
    • 2000
  • The modal analysis based on deformations is the method to drived dynamic responsed from superposition of natural frequency and mode shape. In order to free vibration analysis of the structures, Aluminum-made model is used in experiment. The dynamic characteristic of the structures are determined from acceleration measurements using impulse hammer. Experimenrt input and output signal are derive from impact hammer and the one accerometer. This paper present three methods for calculating the natural frequencies and mode shapes of the structure with theory value and finite element analysis, experiment. The results were good approximated about natural frequency and mode shape.

  • PDF

수치해석을 이용한 충격성형기계의 특성 분석 (A numerical investigation for the characterization of the impact forming machines)

  • Yoo, Y.H.;Yang, D.Y.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.223-226
    • /
    • 1995
  • A three-dimensional elastic-plastic finite element analysis using the explicit time integration method has been performed for the characterization of theimpact forming machines. The block upsetting using a forging hammer has been analyzed. The effects of machine type, work capacity of equipment and the mass ratio in an anvil-type hammer have been studied through the analysis.

  • PDF

맥동파 전자해머 구동시스템의 개발 (Development of Pulsating Type Electromagnetic Hammer Drive Systems)

  • 안동준;남현도
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.269-274
    • /
    • 2016
  • 본 연구는 호퍼와 같은 공정에서 필연적으로 발생하는 스케일 또는 막힘 현상을 방지하기 위해 적용할 수 있는 저주파 전자해머 구동 시스템의 개발에 관한 것이다. 전자기계식 hammering 구동 방식은 진동과 충격량을 동시에 발생시키는 방식으로, 본 논문에서는 전자해머의 특성을 고찰하기 위하여 전자해머에 장착된 직/병렬 스프링 상수 해석을 하였고 발생에너지는 E코어에 부착된 스프링 상수가 모두 같을 경우에 계산된 등가 스프링 상수와 E코어와 I코어 사이의 동작 변위의 곱으로 계산할 수 있음을 보였다. 또한 전자해머의 충격량을 최대화하기 위하여 맥동파 구동 알고리즘을 적용하였으며, 이 알고리즘은 논리 AND 연산과 마이크로 콘트롤러(atmega128)의 타이머 인터럽트와 PWM 기능을 사용하여 구현하였다. 전자해머의 구동회로는 IGBT로 구성된 H-브리지 방식으로 설계하였고, 가속도계 측정법으로 개발한 전자 해머 시스템의 성능을 검증하였다. 실험 결과 제안한 시스템이 기계적 에너지를 양호하게 발생시킬 수 있으며, 호퍼와 같은 공정에 적용할 수 있음을 보였다.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

TiC-SKH51 금속 복합재를 이용한 공작기계 주축 진동 억제에 관한 연구 (Suppression of Machine Tool Spindle Vibration by using TiC-SKH51 Metal Matrix Composite)

  • 배원준;김성태;김양진;이상관
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.262-267
    • /
    • 2020
  • 고속 가공과 저중량 설계에 대한 수요가 증가함에 따라, 공작기계 주축의 진동 발생 가능성이 증가하고 있다. 또한 초정밀 가공에서 주축의 진동은 공작물 표면 형상에 큰 영향을 끼치게 된다. 다양한 가공 공정의 가공 정밀도를 향상시키기 위해, 공작기계 주축 진동 문제를 해결하여야 한다. 이 논문에서, 공작기계 주축의 진동 억제를 위해 TiC-SKH51 금속 기지 복합재가 사용되었다. TiC-SKH51 복합재의 동적 특성을 확인하기 위해 충격 망치 시험을 수행하였다. FEA의 모드 분석 결과와 충격 망치 시험 결과를 비교하여 FEA의 신뢰성을 확인한 후, 공작기계 주축 모델의 해석이 실행되었다. FEA 결과로부터 진동 발생 억제를 위해 TiC-SKH51 복합재를 적용한 공작기계 주축이 사용될 수 있음을 확인하였다.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

A PROCEDURE FOR GENERATING IN-CABINET RESPONSE SPECTRA BASED ON STATE-SPACE MODEL IDENTIFICATION BY IMPACT TESTING

  • Cho, Sung-Gook;Cui, Jintao;Kim, Doo-Kie
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.573-582
    • /
    • 2011
  • The in-cabinet response spectrum is used to define the input motion in the seismic qualification of instruments and devices mounted inside an electrical cabinet. This paper presents a procedure for generating the in-cabinet response spectrum for electrical equipment based on in-situ testing by an impact hammer. The proposed procedure includes an algorithm to build the relationship between the impact forces and the measured acceleration responses of cabinet structures by estimating the state-space model. This model is used to predict seismic responses to the equivalent earthquake forces. Three types of structural model are analyzed for numerical verification of the proposed method. A comparison of predicted and simulated response spectra shows good convergence, demonstrating the potential of the proposed method to predict the response spectra for real cabinet structures using vibration tests. The presented procedure eliminates the uncertainty associated with constructing an analytical model of the electrical cabinet, which has complex mass distribution and stiffness.

서변 가압장에서 수격현상 완화에 대한 연구 (Simulation of Water Hammer Mitigation at Seobyun Pumping Station)

  • 김상현;박남식;정봉석;이동훈
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.95-104
    • /
    • 1999
  • A simulation of water hammer, introduced by abruptly varied motion of a pumping machine, was performed at a one of typical pumping station in Korea. Impact of hydraulic structure such as check valve, pressure relief valve and air valve in mitigating water hammer effect was estimated gradually. Method of characteristic was employed for the effective calculation of discharge and head. The relationship between various hydraulic structures and flow was properly integrated on the base of the method of characteristic. The methodology in this approach can provide significant contribution in decision making procedure for the design of hydraulic structure at a typical pumping station in Korea.

  • PDF