• Title/Summary/Keyword: impact echo(IE)

Search Result 16, Processing Time 0.028 seconds

Analysis of Modified Impact Echo applying Discrete Wavelet Transform (이산 웨이블릿 변환을 적용한 수정충격반향기법의 해석)

  • 추진호;조성호;황선근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.309-314
    • /
    • 2003
  • Impact Echo method has been successful in detecting a variety of defects in concrete structure. This study has the objectives to show important aspects of applying the Discrete Wavelet Transform(DWT) to signal processing of Modified Impact Echo(ModIE) Measurement systems and to the understanding of the seismic wave propagation. The data of ModIE were processed by DWT and compared with the results of conventional ModIE Analysis. Although it is inconsistent in the evaluated thickness of concrete lining, the DWT provides the features of separation, synthesis and de-noising in the original signal. The application of technique by wavelet was explained numerically with ABAQUS and performed experimentally with a real scale model in this work. Further works on the possible ways for creating new mother wavelet are specially needed for the enhancement of seismic signal analysis.

  • PDF

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

A study on a Integrated analysis for survey of the cavity behind the Concrete (콘크리트 배면 공동탐사를 위한 복합적 해석 연구)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.185-189
    • /
    • 2009
  • Integrated analysis of GPR, impact echo and impulse response for detection of the rear cavity of concrete was performed on the test-bed which was made in the same scale and component ratio to the real concrete structure. GPR survey may roughly delineate the location of the cavity, but applying the IE and IR technique to the test-bed, the location was clearly identified.

  • PDF

Integrated Application of GPR, IE and IR Methods to Detection of the Rear Cavity of Concrete (콘크리트 배면공동 탐지를 위한 GPR, IE 및 IR기법의 복합 적용)

  • Noh, Myung-Gun;Oh, Seok-Hoon;Jang, Bong-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.338-346
    • /
    • 2009
  • Integrated analysis of GPR, impact echo (IE) and impulse response (IR) was performed to detect the rear cavity of concrete for a test-bed which was made with the same scale and component ratio to the real concrete structure. The test-bed was designed to be capable of observing various response reflecting the existence of iron reinforcing bar and cavity. GPR survey did not clearly resolve the existence of the cavity, although distinguishable responses were observed in the presence of the cavity. In contrast, IE and IR method showed distinct responses, indicating the existence of the cavity. Finally, integrated application of the three methods makes it possible to exactly identify the location of the cavity, although the iron reinforcing bar made a little variation of response.

Progressive Evaluation of Concrete Deterioration Caused by Chloride-Induced Steel Corrosion Using Impact-Echo Testing (충격 반향 신호 모니터링을 통한 철근 부식 진전에 따른 콘크리트 상태 평가)

  • Rizky Pitajeng;Julfikhsan Ahmad Mukhti;Seong-Hoon Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • This study investigates the evolution of concrete damage due to chloride-induced steel corrosion through Impact-echo (IE) testing. Three reinforced concrete specimens, each measuring 1500 mm in length, 400 mm in width, and 200 mm in thickness, were fabricated using three concrete mixture proportions of blended cement types: ordinary Portland cement, ground granulated blast-furnace slag and fly ash. Steel corrosion in the concrete was accelerated by impressing a 0.5 A current following a 35-day cycle of wet-and-dry saturation in a 3% NaCl solution. Initial IE data collected during the saturation phase showed no significant changes, indicating that moisture had a minimal impact on IE signals and highlighting the slow progress of corrosion under natural conditions. Post-application of current, however, there was a noticeable decline in both IE peak frequency and the P-wave velocity in the concrete as the duration of the impressed current increased. Remarkably, progressive monitoring of IE proves highly effective in capturing the critical features of steel-corrosion induced concrete deterioration, such as the onset of internal damages and the rate of damage propagation. These results demonstrate the potential of progressive IE data monitoring to enhance the reliability of diagnosing and prognosticating the evolution of concrete damage in marine environment.

Case Study on the Impact-Echo Method for Tunnel Safety Diagnosis (터널 안전진단을 위한 충격반향법 사례 연구)

  • Shin, Sung-Ryul;Jo, Cheol-Hyun
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • For the purpose of determining the thickness of concrete lining and detect of the cavity where may be located behind tunnel lining, IE (Impact-Echo) method it effectively useful in the tunnel safety diagnosis and the quality control during the construction. As a part of case study, we applied IE method to various tunnel structure types such as road tunnel and subway tunnel constructed by NATM (New Austrian Tunnelling Method) and ASSM (American Steel Support Method). As tunnel specifications estimated from this method were compared with coring data, design drawing and other survey results, it was very good agreement with each other. In conclusion, we verified that IE method shows an accurate and reliable result. The conventional interpretation of IE method in frequency domain gives only vertical information at a certain point. However, the interpretation using time-frequency analysis and depth section imaging technique from two dimensional profiling surveys can show more reliable information about structure inside.

Enhanced impact echo frequency peak by time domain summation of signals with different source receiver spacing

  • Ryden, Nils
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The Impact Echo method can be used to measure the thickness of concrete plate like structures. Measurements are based on the identification of a clear thickness resonance frequency which can be difficult in very thick or highly attenuative plates. In this study the detectability of the measured resonant frequency is enhanced by time domain summation of signals with different source receiver spacing. The proposed method is based on the spatial and temporal properties of the first higher symmetric zero group velocity Lamb mode (S1-ZGV) which are described in detail. No application dependent tuning or filtering is needed which makes the method robust and suitable for implementation in automatic IE thickness measurements. The proposed technique is exemplified with numerical data and field data from a thick concrete wall and a highly attenuative asphalt concrete layer.

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : I. Numerical Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파병행기법 : I. 수치해석적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.257-270
    • /
    • 2002
  • The Impact-Echo(IE) method has been used to evaluate the integrity of concrete structures. In this method, the P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects. In many field applications of the IE method, the P-wave velocity is obtained by testing the core or the portion of a structure where the exact thickness is known. Occasionally, however, the core can not be obtained in specific structures and the P-wave velocity determined from core testing may not be a representative value of the structure. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. Results obtained from numerical studies are presented in this paper (Part I), and results obtained from experimental studies are presented in the companion paper (Part II). In this paper, numerical analyses using ABAQUS were carried out to investigate the effectiveness and the limitations of the IE-SASW method.

A Model Test of IE and IR Method to Detect the Cavity Underneath the Concrete Structure (콘크리트 구조물 하부의 공동 탐지를 위한 충격반향(IE) 및 충격응답(IR) 기법의 모형 실험)

  • Noh, Myung-Gun;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • The impact echo and impulse response methods were applied to the safety inspection of concrete structure, which has the rear cavity. The concrete structure model used in this study was divided into four sections, pure concrete, concrete+cavity, reinforced concrete with iron bar, and reinforced concrete+cavity, respectively. Previous study performed by authors have showed a possibility of success to use these method for detection of the rear cavity of concrete structure. Therefore, we tried to get more enhanced result with IE and IR methods through this study. Especially, IE and IR methods are relatively accurate to map the point of measurement, which makes it possible to interpret the depth of the concrete bed and effect by rear cavity with confidence. Followings were revealed from the results; the IE method shows some small peak zones probably indicating the rear cavity in the frequency lower than the resonance frequency and the changes of mobility and dynamic stiffness in the IR method indicate the weak zones. The proposed methods can be used to delineate the weak zones of the concrete structure.