• 제목/요약/키워드: immunosuppressive activity

검색결과 122건 처리시간 0.027초

비페닐 디메칠 디카르복실레이트가 케토코나졸의 면역억제에 미치는 영향 (Effect of Biphenyl Dimethyl Dicarboxylate on the Immunosuppression of Ketokonazole)

  • 임종필;양재헌
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권4호
    • /
    • pp.241-247
    • /
    • 1998
  • Ketoconazole is an imidazole antifungal agent which inhibits the biosynthesis of fungal cellmembrane ergosterol and has immunosuppressive properties in vitro. Biphenyl dimethyl dicarboxylate (PMC) has been utilized for antioxidative action and for liver-protective purposes. Studies were undertaken to investigate effects of biphenyl dimethyl dicarboxylate (PMC) on the immunosuppression of ketoconazole in ICR mice. In the combination of PMC and ketoconazole, as compared with the treatment of ketoconazole alone, there were significant increases in activities of natural killer (NK) cells and phagocytes along with circulation leukocytes. The elevation of serum glutamic-pyruvic transaminase (S-GPT) and total protein levels caused by ketoconazole were reduced by the combination of PMC and ketoconazole. In addition, lower serum albumin and albumin/globulin (A/G) ratio were also increased to normal level.

  • PDF

Effect of Tectorigenin obtained from Pueraria thunbergiana Flowers on Phase I and -II Enzymes and Tissue Factor in the Streptozotocin-induced Diabetic Rat

  • Choi, Jong-Won;Shin, Myung-Hee;Park, Kun-Young;Lee, Kyung-Tae;Jung, Hyun-Ju;Park, Hee-Juhn
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.386.2-386.2
    • /
    • 2002
  • We investigated the effect of tectorigenin (1) with hypoglycemic and hypolipidemic effects on Phase I and II enzymes and TF activity to elucidate the action of an immunosuppressive compound (1) in the diabetic rat. Compound 1 was obtained from the hydrolysis of tectoridin easily isolated from the flower of Pueraria thunbergiana(Leguminosae). Puerariae Flos has been used as therapeutics for diabetes mellitus in traditional medicine of Korea. (omitted)

  • PDF

Evaluation of Immunotoxicity of Shizukaol B Isolated from Chloranthus japonicus

  • Kwon, Soon-Woo;Kim, Young-Kook;Kim, Jee-Youn;Ryu, Hwa-Sun;Lee, Hong-Kyung;Kang, Jong-Soon;Kim, Hwan-Mook;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.59-64
    • /
    • 2011
  • Dimeric sesquiterpenoid shizukaol B (SKB) was isolated from Chloranthus japonicus Sieb. Except that SKB inhibited adhesion molecule expression in monocytes and endothelial cells, no more biological and pharmacological activity of SKB had been reported until now. In this study, we examined immunosuppressive activity of SKB. SKB strongly inhibited lipopolysaccharide (LPS)-induced B cell proliferation with $IC_{50}$ of 137 ng/ml, but slightly or not concanavalin A-induced T cell proliferation, LPS-induced macrophage NO production, and LPS-induced dendritic cell maturation. As a mechanism, SKB strongly induced apoptotic death of B cells, but not other cell types. These results suggested that SKB induced toxicity-mediated immunosuppression against B cells.

Development of a High Efficient "Dual Bt-Plus" Insecticide Using a Primary Form of an Entomopathogenic Bacterium, Xenorhabdus nematophila

  • Eom, Seonghyeon;Park, Youngjin;Kim, Hyeonghwan;Kim, Yonggyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.507-521
    • /
    • 2014
  • A phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared with a wild-type primary form, a secondary form usually loses several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in its production of eicosanoid-biosynthesis inhibitors (EBIs) compared with the primary form of X. nematophila. Production of oxindole and p-hydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila enhanced the pathogenicity of Bacillus thuringiensis ( Bt) significantly more than the culture broth of the secondary form. Furthermore, this study developed a highly efficient "Dual Bt-Plus: to control both lepidopteran insect pests Plutella xylostella and Spodoptera exigua, by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.

Effect of Methylprednisolone Sodium Succinate on Innate Immune Function of Canine Peripheral Blood Phagocytes

  • Park, Moo-Rim;Kang, Ji-Houn;Yang, Mhan-Pyo
    • 한국임상수의학회지
    • /
    • 제25권6호
    • /
    • pp.440-446
    • /
    • 2008
  • Glucocorticoids (GCs) are the most widely used immunosuppressive agents, but animals treated with GCs may experience deleterious side effects which limit their use in many clinical conditions. In the present study, we examined whether methylprednisolone sodium succinate (MPSS), a glucocorticoid, modulates circulating leukocyte numbers, phagocytic capacity and oxidative burst activity (OBA) of canine peripheral blood phagocytes, and whether tumor necrosis factor-alpha (TNF-$\alpha$) release is affected by MPSS injection. Neutrophilia and monocytosis were induced by the administration of a high dose of MPSS, which is the recommended protocol for canine patients with acute spinal cord injury. The injection of MPSS decreased the phagocytic capacity of canine PMNs but not PBMCs, and recovered 12 hours (hr) after the completion of MPSS dosing. The OBA of both PMNs and PBMCs was suppressed by MPSS, and restored 24 hr after the completion of dosing. The lipopolysaccharide-induced TNF-α release by PBMCs but not PMNs exposed to MPSS was reduced 12 hr after the completion of dosing, and recovered 48 hr after the completion of dosing. These results suggest that the application of MPSS protocol inhibits the innate immune functions of canine peripheral blood phagocytes for short time relatively.

Oligopeptide derived from solid-state fermented cottonseed meal significantly affect the immunomodulatory in BALB/c mice treated with cyclophosphamide

  • Liu, Jiancheng;Sun, Hong;Nie, Cunxi;Ge, Wenxia;Wang, Yongqiang;Zhang, Wenju
    • Food Science and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1791-1799
    • /
    • 2018
  • In this study, the immunomodulatory activity of oligopeptide (CP) derived from solid-state fermented cottonseed meal were investigated in immunosuppressed BALB/c mice models by treatment with cyclophosphamide (CY). Results indicated that oligopeptide increased the thymus and spleen indices of CY-treated mice. The count of plague forming cells (PFC) and the content of half serum hemolysis ($HC_{50}$) in immunosuppressive mice were restored to the normal level in CP-10 and CP-20 groups while the cytokines interleukin (IL)-2, IL-6, and tumor necrosis factor alpha (TNF-${\alpha}$) were increased significantly in CP-20 group. Similar increasing the immunoglobulin of IgG and IgM content in the serum of CP-10 group were also observed. These findings indicated that oligopeptide derived from solid-state fermented cottonseed meal had a strong immune-enhancing activity as well as a protective effect against immunosuppression induced by cyclophosphamide in mice.

Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad

  • Yongtong Ge;Dalei Cheng;Qingzhi Jia;Huabao Xiong;Junfeng Zhang
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.21.1-21.22
    • /
    • 2021
  • Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.

면역억제제 Tautomycetin을 생산하는 방선균의 고체배지 pH에 따른 항진균 활성 (Solid Medium pH-Dependent Antifungal Activity of Streptomyces sp. Producing an Immunosuppressant, Tautomycetin)

  • 허윤아;최시선;장용근;홍순광;김응수
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.26-29
    • /
    • 2007
  • Tautomycetin(TMC)은 국내 토양에서 분리된 방선균(Streptomyces sp. CK4412)로부터 생합성 되는 항진균성 2차 대사산물로서, Cyclosporin및 FK506과 같은 기존의 면역억제제보다 작용 메카니즘 및 효능이 훨씬 탁월한 선형의 폴리케타이드계 면역억제 화합물이다. 고체배지의 pH변화와 TMC생산성과의 상관관계를 규명하기 위하여, 방선균 CK4412를 다양한 pH조건에서 배양하면서 항진균 활성 및 TMC생산량을 비교분석 하였다. 고체배지의 pH를 산성조건(pH 4-5)으로 유지하여 방선균 CK4412 균주를 배양할 경우, 중성 pH 조건에서 배양한 경우보다 훨씬 탁월한 항진균 활성 및 TMC생산성이 관찰되었다. 본 연구결과는 대표적인 방선균 S. coelicolor에서 입증된 pH-shock게 의한 2차대사산물의 생산성 증대효과가 대사산물의 특성과 균주가 전혀 다른 TMC 생산균주 CK4412에서도 관찰됨을 입증함으로써, pH조절에 의한 다양한 종류의 방선균 유래 유용 생리활성물질의 생산성 증대 전략을 제시하고 있다.

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

곤충병원세균(Xenorhabdus ehlersii KSY)의 곤충면역 억제 능력과 이를 이용한 Bacillus thuringiensis 의 살충력 증가 효과 (Immunosuppressive Activity of an Entomopathogenic Bacteria, Xenorhabdus ehlersii KSY, and Its Application to Enhance Insecticidal Activity of Bacillus thuringiensis)

  • 김효일;김용균
    • 한국응용곤충학회지
    • /
    • 제58권2호
    • /
    • pp.101-109
    • /
    • 2019
  • 곤충병원선충인 Steinernema longicaudum에 공생하는 Xenorhabdus ehlersii KSY 세균은 나방류에 대한 높은 병원력을 발휘한다. 본 연구에서 이 세균의 병원력이 아이코사노이드 생합성을 억제하여 기주 곤충의 면역 저하를 유발한다는 것을 확인하였다. 그러나 이 세균의 병원력은 혈강 주입에 의해 야기된다. 섭식을 통해 이 세균을 혈강으로 전달하기 위해 곤충의 중장벽을 파괴하여 병원력을 발휘하는 Bacillus thuringiensis(Bt)와 혼합하여 처리하였다. 배추좀나방(Plutella xylostella) 유충에 대해서 X. ehlersii 세균 배양액의 혼합 처리는 Bt 살충력을 현격하게 증가시켰다. 이러한 살충효과는 또 다른 나비목 해충인 콩명나방에 대해서도 확인되었다. 제형화를 위해 X. ehlersii 세균 배양액을 동결건조하여 Bt 수화제와 혼합하였다. 이를 기반으로 간이 포장실험을 수행하였다. Bt 단독으로 처리한 결과 약 80%의 방제 효과를 보인 반면 X. ehlersii 혼합제는 95% 이상의 방제효과를 나타냈다. 본 연구는 곤충병원세균 X. ehlersii가 새로운 해충 방제제로 개발될 가능성을 제시하고 있다.