• Title/Summary/Keyword: immunoblotting

Search Result 395, Processing Time 0.03 seconds

The ability of orexin-A to modify pain-induced cyclooxygenase-2 and brain-derived neurotrophic factor expression is associated with its ability to inhibit capsaicin-induced pulpal nociception in rats

  • Shahsavari, Fatemeh;Abbasnejad, Mehdi;Esmaeili-Mahani, Saeed;Raoof, Maryam
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.261-270
    • /
    • 2022
  • Background: The rostral ventromedial medulla (RVM) is a critical region for the management of nociception. The RVM is also involved in learning and memory processes due to its relationship with the hippocampus. The purpose of the present study was to investigate the molecular mechanisms behind orexin-A signaling in the RVM and hippocampus's effects on capsaicin-induced pulpal nociception and cognitive impairments in rats. Methods: Capsaicin (100 g) was applied intradentally to male Wistar rats to induce inflammatory pulpal nociception. Orexin-A and an orexin-1 receptor antagonist (SB-334867) were then microinjected into the RVM. Immunoblotting and immunofluorescence staining were used to check the levels of cyclooxygenase-2 (COX-2) and brain-derived neurotrophic factor (BDNF) in the RVM and hippocampus. Results: Interdental capsaicin treatment resulted in nociceptive responses as well as a reduction in spatial learning and memory. Additionally, it resulted in decreased BDNF and increased COX-2 expression levels. Orexin-A administration (50 pmol/1 µL/rat) could reverse such molecular changes. SB-334867 microinjection (80 nM/1 µL/rat) suppressed orexin's effects. Conclusions: Orexin-A signaling in the RVM and hippocampus modulates capsaicin-induced pulpal nociception in male rats by increasing BDNF expression and decreasing COX-2 expression.

The Signal Transduction Mechanisms on the Intestinal Mucosa of Rat Following Irradiation (방사선조사후 백서소장점막에서 발생하는 신호전달체계에 관한 연구)

  • Yoo Jeong Hyun;Kim Sung Sook;Lee Kyung Ja;Rhee Chung Sik
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.79-95
    • /
    • 1997
  • Purpose : Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. $PLC-\gamma$ 1 is one of the key regulatory enzymes in signal transduction for cellular proliferation and differentiation. Ras oncoprotein, EGFR, and PKC are also known to be involved in cell growth. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented Thus, this study was Planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Material and Method : Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into S groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGFR and PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H&I stain, and the mitoses for the evidence of regeneration were counted using the light microscopy & PCNA kit. The Phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of $PLC-\gamma$ 1 activity. Results: In the immunohistochemistry , the expression of $PLC-{\beta}$ was negative for all grøups. The expression of $PLC-{\gamma}1$ was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of $PKC-{\delta}1$ was strongly positive in group 1 followed by group II in the damaged surface epithelium. The above findings were also confirttled in the immunoblotting study. In the immunoblotting study, the expressions of $PLC-{\beta}$, $PLC-{\gamma}1$, and $PKC-{\delta}1$ were the same as the results of immunohis-tochemistry. The expression of ras oncoprctein was weakly positive in groups II, III and IV. The of EGFR was the highest in the group II, III, follwed by group IV and the expression of PKC was weakly positive in the group II and III. Conclusion: $PLC-{\gamma}1$ mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. $PLC-{\delta}1$ mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the $PKC-{\delta}1$.

  • PDF

Organ-specific antigens of Clonorchis sinensis

  • Li, Shun-Yu;Chung, Byung-Suk;Choi, Min-Ho;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.4
    • /
    • pp.169-174
    • /
    • 2004
  • This study was carried out to find out specific proteins from different organs of Clonorchis sinensis. Crude extract, organ-specific and excretory-secretory (ES) proteins were analyzed by immunoblot with infected human sera. The bands of 7- and 17 -kDa were main component of intestinal fluid and ES protein and commonly found in all organ-specific proteins. The 17-kDa protein was observed from ES antigen, intestinal fluid, eggs and sperms, 26- and 28-kDa proteins were from the uterus, vitellaria, and ovary, and 34-, 37-, 43- and 50-kDa proteins were mainly from the testis and sperms. Serum of mice immunized with sperms reacted to the 50-kDa protein by immunoblotting and immunohistochemical staining showed a positive reaction at the seminal receptacle and seminiferous tubule. The present results show that the 7-kDa protein is a common antigen of every part or organ of C. sinensis, but different organs express their specific antigenic protein bands.

Involvement of Ca2+/Calmodulin Kinase II (CaMK II) in Genistein-Induced Potentiation of Leucine/Glutamine-Stimulated Insulin Secretion

  • Lee, Soo-Jin;Kim, Hyo-Eun;Choi, Sung-E;Shin, Ha-Chul;Kwag, Won-Jae;Lee, Byung-Kyu;Cho, Ki-Woong;Kang, Yup
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energygenerating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or $Ca^{2+}$ channel opener Bay K8644. Genistein at a concentration of $50{\mu}M$ showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of $Ca^{2+}$/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of $[Ca^{2+}]_i$ and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.

The effect of the occlusion of the left bronchial artery on the production of HSP70 in cat lung (고양이의 기관지 동맥의 결찰이 폐조직내 열단백질 70의 생성에 미치는 효과)

  • Yun, Sang Won;Rheu, Nam Soo;Cho, Dong Il;Nam, Hyun Jung;Sung, Back Kil;Na, Heung Sik;Hong, Seung Kil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.1
    • /
    • pp.175-182
    • /
    • 1997
  • Several stresses are known to induce synthesis of heat shock protein The present study was performed to see whether pulmonary ischemia, induced by the bronchial artery occlusion, produced HSP70 in cat lung. To This aim, we compared experimental and control groups of cats with respect to the HSP70 production in the lung. Experimental animals were subjected to 10-min bronchial artery occlusion followed by reperfusion. The interval between the end of the occlusion and the end of the reperfusion was 1 hour, 4 hours and 8 hours, whereas control animal was not subjected 10 any manipulation except anesthesia. According to the interval differences, experimental animals were divided into 1HR, 4HRs and 8HRs groups. To determine The induction of HSP70 in each group, total proteins of lung tissues were extracted and separated by PAGE electrophoresis. Immunoblotting with a mouse monoclonal anti -HSP70 IgG antibody revealed that HSP70 was not detected in the pulmonary tissues resected from control, 1HR or 4HRs groups. In contrast. HSP70 expression in 8HRs group was marked. These results suggest that pulmonary ischemia by the bronchial artery occlusion produces HSP70 in a delayed manner.

  • PDF

Cheogjogupye-Tang has Anti-oxidant Potential through the Activation of Nrf2 (청조구폐탕(淸燥救肺湯)의 Nrf2 매개 항산화 효능)

  • Lee, Kwang Gyu;Lee, Hak In;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • Transcription factor, Nrf2 was well known to protect cell from oxidative stress by up-regulating it's dependent anti-oxidative genes such as HO-1 and NQO1. Cheongjogupye-tang (CJGPT), a traditional herbal formula was originally recorded in 『EuiMunBeopRyul』, still having been used to treat pulmonary disease such as asthma and pulmonary inflammation, in Eastern Asian countries. However, the underlying therapeutic mechanisms remain elusive. The purpose of this study is to investigate the anti-inflammatory or anti-oxidative effects of CJGPT on the RAW 264.7 cells. To examine the anti-inflammatory or anti-oxidative effects of CJGPT, MTT assay, immunoblotting, RT-PCR and reporter gene assays were performed. Although CJGPT slightly suppressed the nuclear NF-κB expression, it did not decreased the expression of pro-inflammatory genes in LPS-stimulated RAW 264.7 cells. Moreover, it did not increased the transcriptional activity of NF-κB in reporter gene assay. However, CJGPT upregulated the nuclear expression of Nrf2, as well as increased the expression of Nrf2-dependent genes such as HO-1 and NQO1. In addition, CJGPT incresed the transcriptional activity of Nrf2. Taken together, our results showed that CJGPT exerts functions as an anti-oxidant mainly by activating Nrf2.

The increased expression of CD99 in a differentiated neuroblastoma cell line (신경모세종의 분화에 따른 인체 CD99의 표현의 증가)

  • Choi, Eun Young;Lee, Im-Soon
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • Background: The human mic2 gene is a pseudoautosomal gene that encodes a cell surface antigen, CD99. High levels of CD99 constitute a tumor marker in Ewing s sarcoma (ES). We have recently demonstrated that CD99-induced apoptosis occurs only in undifferentiated ES cells, not in differentiated ES cells, raising the possibility of the involvement of CD99 in neural ontogeny. Methods: To elucidate the relations between the expression of CD99 and the differentiation of neural cells and the mechanism by which the expression of CD99 is regulated, we analyzed the differential patterns of CD99 expression in SH-SY5Y by treatment of 12-O-tetradecanoyl-13-phorbol acetate (TPA) and retinoic acid. In addition, to explore the transcriptional activity of CD 99 during neural cell differentiation, SH-SY5Y cells were transiently transfected with a CD99 promoter-driven luciferase construct, and treated with the inducers. Results: In immunoblotting and flow cytometry, the expression level of CD99 was increased on differentiated SH-SY5Y cells induced by TPA and retinoic acid. The luciferase activity was elevated by the treatment with TPA, known to mature SH-SY5Y cells toward a sympathetic neuronal lineage, whereas retinoic acid inducing a sympathetic chromaffin lineage displayed little effect. Conclusion: The result indicates that CD99 might be expressed only on cells maturing toward a neuronal lineage among differentiating primitive neuronal cells. In addition, the expression of CD99 seems to be regulated at the transcriptional level during the differentiation.

  • PDF

Identification of SAP as a CTLA-4 Binding Molecule: a Role of SAP in CTLA-4 Signaling Proposed

  • Lee, Kyung-Mi
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.72-78
    • /
    • 2002
  • Background: The precise mechanism by which CTLA-4 regulates T cell immune responses is still not fully understood. Previously we proposed that CTLA-4 could downregulate T cell function by modulating a signaling cascade initiated from the T cell receptor complex. The evidence for this notion comes from our findings that CTLA-4 associated with the T cell receptor zeta (TCR zeta) chain, and hence regulated TCR zeta phosphorylation by co-associated SHP-2 tyrosine phosphatase (1). In this report, we investigated whether any other signaling molecules could be involved in the CTLA-4 signaling pathway. Methods: We have taken biochemical approaches, such as immunoprecipitation followed by autoradiography or immunoblotting, to identify the molecules associated with CTLA-4. To perform these assays, we used activated primary T cells and ectopically transfected 293 cells. Various truncation mutants of CTLA-4 were used to map the interaction site on CTLA-4. Results: We found that in addition to TCR zeta and SHP-2, a recently cloned small adaptor molecule, SAP (SLAM-associated protein), was also able to associate with CTLA-4. We identified the domain of SAP association in CTLA-4 being a motif involving GVYVKM. This motif has been previously found to bind SHP-2 through its phosphorylated tyrosine interaction with SH-2 domain of SHP-2. Indeed, co-expression of SAP and SHP-2 reduced their binding to CTLA-4 significantly, suggesting that SAP and SHP-2 compete for the common binding site, GVYVKM. Thus, by blocking SHP-2 recruitment SAP could function as a negative regulator of CTLA-4. Conclusion: Taken together, our data suggest the existence of complicate signaling cascade in regulating CTLA-4 function, and further provide evidence that SAP can act either as a positive or negative regulator depending on the nature of the associating receptors.

Aberrant Epigenetic Alteration in Eca9706 Cells Modulated by Nanoliposomal Quercetin Combined with Butyrate Mediated via Epigenetic-NF-κB Signaling

  • Zheng, Nai-Gang;Wang, Jun-Ling;Yang, Sheng-Li;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4539-4543
    • /
    • 2014
  • Since the epigenetic alteration in tumor cells can be reversed by the dietary polyphenol quercetin (Q) or butyrate (B) with chemopreventive activity, suggesting that Q or B can be used for chemopreventive as well as therapeutic agent against tumors. In this study the polyphenol flavonoid quercetin (Q) or sodium butyrate (B) suppressed human esophageal 9706 cancer cell growth in dose dependent manner, and Q combined with B (Q+B) could further inhibit Eca9706 cell proliferation than that induced by Q or B alone, compared with untreated control group (C) in MTT assay. The reverse expressions of global DNMT1, $NF-{\kappa}Bp65$, HDAC1 and Cyclin D1 were down-regulated, while expressions of caspase-3 and $p16INK4{\alpha}$ were up-regulated, compared with the C group in immunoblotting; the down-regulated HDAC1-IR (-immunoreactivity) with nuclear translocation, and up-regulated E-cadherin-IR demonstrated in immunocytochemistry treated by Q or B, and Q+B also displayed further negatively and positively modulated effects compared with C group. The order of methylation specific (MS) PCR of $p16INK4{\alpha}$: C>B/Q>Q+B group, while the order of E-cadherin expression level was contrary, Q+B>Q/B>C group. Thus, Q/B, especially Q+B display reverse effect targeting both altered DNA methylation and histone acetylation, acting as histone deacetylase inhibitor mediated via epigenetic-$NF-{\kappa}B$ cascade signaling.

Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway

  • Lorz, Laura Rojas;Kim, Donghyun;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.453-460
    • /
    • 2020
  • Background: BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive effects on allergic reactions in skin have not yet been described in detail, this study's main objective was to determine its efficacy in the treatment of atopic dermatitis (AD). Methods: High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both anti-DNP-IgE/DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187 alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent assay) and β-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells, we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38, and c-Jun N-terminal kinase proteins by immunoblotting. Results: BIOGF1K decreased the AD response by reducing both histamine and β-hexosaminidase release as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells. Conclusions: BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural approach for treating AD.