• 제목/요약/키워드: immunity gene

검색결과 283건 처리시간 0.029초

Generation of Renal Cell Carcinoma-specific CD4+/CD8+ T Cells Restricted by an HLA-39 from a RCC Patient Vaccinated with GM-CSF Gene-Transduced Tumor Cells

  • Jun, Do Youn;Moutner, Joseph;Jaffee, Elizabeth
    • IMMUNE NETWORK
    • /
    • 제3권2호
    • /
    • pp.96-102
    • /
    • 2003
  • Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced tumor cell vaccines induce very potent systemic anti-tumor immunity in preclinical and clinical models. Our previous phase I clinical trial in patients with metastatic renal cell carcinoma (RCC) has demonstrated both immune cell infiltration at vaccine sites and T cell-mediated delayed-type hypersensitivity (DTH) response to whole tumor cell vaccines. Methods: To investigate the immune responses to autologous genetically- modified tumor cell vaccines, tumor-specific $CD8^+$ T cell lines were generated from peripheral blood lymphocytes (PBL) of a RCC patient 1.24 by repeated in vitro stimulation with either B7.1-transduced autologous RCC tumor cells or B7.1-transduced autologous tumor cells treated with interferon gamma ($IFN{\gamma}$), and cloned by limiting dilution. Results: Among several RCC-specific cytotoxic T lymphocytes (CTLs), a $CD4^+/CD8^+$ double positive T cell clone (17/A2) appeared to recognize $IFN{\gamma}$-treated autologous RCC restricted by HLA-B39. The 17/A2 also recognized other HLA-B39 positive RCC tumor cells after $IFN{\gamma}$ treatment. Conclusion: These results demonstrate that autologous RCC vaccination successfully generates the tumor-specific CTL 17/A2, and suggest that the presentation and recognition of the tumor antigen by the 17/A2 might be upregulated by $IFN{\gamma}$.

Production of IL-1β and Inflammasome with Up-Regulated Expressions of NOD-Like Receptor Related Genes in Toxoplasma gondii-Infected THP-1 Macrophages

  • Chu, Jia-Qi;Shi, Ge;Fan, Yi-Ming;Choi, In-Wook;Cha, Guang-Ho;Zhou, Yu;Lee, Young-Ha;Quan, Juan-Hua
    • Parasites, Hosts and Diseases
    • /
    • 제54권6호
    • /
    • pp.711-717
    • /
    • 2016
  • Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines, which are important for innate immunity. NLRs, i.e., nucleotide-binding oligomerization domain (NOD)-like receptors, play a crucial role as innate immune sensors and form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of $pro-IL-1{\beta}$. To elucidate the role of inflammasome components in T. gondiiinfected THP-1 macrophages, we examined inflammasome-related gene expression and mechanisms of inflammasome-regulated cytokine $IL-1{\beta}$ secretion. The results revealed a significant upregulation of $IL-1{\beta}$ after T. gondii infection. T. gondii infection also upregulated the expression of inflammasome sensors, including NLRP1, NLRP3, NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and NAIP, in a time-dependent manner. The infection also upregulated inflammasome adaptor protein ASC and caspase-1 mRNA levels. From this study, we newly found that T. gondii infection regulates NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and neuronal apoptosis inhibitor protein (NAIP) gene expressions in THP-1 macrophages and that the role of the inflammasome-related genes may be critical for mediating the innate immune responses to T. gondii infection.

Gene Expression Analysis for Statin-induced Cytotoxicity from Rat Primary Hepatocytes

  • Ko, Moon-Jeong;Ahn, Joon-Ik;Shin, Hee-Jung;Kim, Hye-Soo;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 2010
  • Statins are competitive inhibitors of hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase and used most frequently to reduce plasma cholesterol levels and to decrease cardiovascular events. However, statins also have been reported to have undesirable side effects such as myotoxicity and hepatotoxicity associated with their intrinsic efficacy mechanisms. Clinical studies recurrently reported that statin therapy elevated the level of liver enzymes such as ALT and AST in patients suggesting possible liver toxicity due to statins. This observation has been drawn great attention since statins are the most prescribed drugs and statin-therapy was extended to a larger number of high-risk patients. Here we employed rat primary hepatocytes and microarray technique to understand underlying mechanism responsible for statin-induced liver toxicity on cell level. We isolated genes whose expressions were commonly modulated by statin treatments and examined their biological functions. It is of interest that those genes have function related to response to stress in particular immunity and defense in cells. Our study provided the basic information on cellular mechanism of statin-induced cytotoxicity and may serve for finding indicator genes of statin -induced toxicity in rat primary hepatocytes.

Activation of Macrophages by the Components Produced from Cordyceps militaris

  • Kim, Hyun-Yul;Kim, Kwang-Hee;Han, Shin-Ha;Lee, Seong-Jung;Kwon, Jeung-Hak;Lee, Sung-Won;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제7권2호
    • /
    • pp.57-65
    • /
    • 2007
  • Background: Cordyceps militaris have been reported to modify the immune and inflammatory responses both in vivo and in vitro. Macrophages play important roles in the innate immunity through the phagocytosis of antigens. This study examined the effects of Cordyceps militaris on the activation of murine macrophage RAW 264.7 cells and primary macrophages. Methods: The components contained in culture broth of Cordyceps militaris were purified by propyl alcohol extraction and HP 20 column chromatography to CMDB, CMDBW, CMDB5P, and CMDB25P. The amounts of nitric oxide (NO) were determined by using ELISA, Griess reagent respectively. The amounts of some cytokines were determined by using ELISA, western blot, and RT-PCR The expression levels of cell surface molecules (ICAM-1, B7-1 and B7-2) were measured by flow cytometric analysis. Results: All the components of Cordyceps militaris produced significant amounts of NO. In particular, CMDB produced much more NO in RAW 264.7 cells and primary macrophages than other fractions of Cordyceps militaris. CMDB increased significantly the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-1${\beta}$, and IL-6 dose-dependently in RAW 264.7 cells. Examination of the gene expression level also showed that the enhanced production of cytokines was correlated with the up-regulation of i-NOS expression, cycloxygenase (COX)-2 expression, IL-1${\beta}$ and IL-6 expression, and TNF-${\alpha}$ expression on the expression of mRNAs by semi-quantitative RT-PCR Western blot analysis also confirmed that CMDB enhances the expression level of these cytokines. Conclusion: These results show that CMDB stimulates the production of NO and pro-inflammatory cytokines and can also up-regulate the gene expression levels in macrophages.

A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

  • Jung, Ga Young;Park, Ju Yeon;Choi, Hyo Ju;Yoo, Sung-Je;Park, Jung-Kwon;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.357-362
    • /
    • 2016
  • ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus)

  • Kim, Jung Eun;Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권4호
    • /
    • pp.275-286
    • /
    • 2014
  • To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.

Construction and Preliminary Immunobiological Characterization of a Novel, Non-Reverting, Intranasal Live Attenuated Whooping Cough Vaccine Candidate

  • Cornford-Nairns, R.;Daggard, G.;Mukkur, T.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.856-865
    • /
    • 2012
  • We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin-12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cell-mediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.

Expression Profiling of Lipopolysaccharide Target Genes in RAW264.7 Cells by Oligonucleotide Microarray Analyses

  • Huang, Hao;Park, Cheol-Kyu;Ryu, Ji-Yoon;Chang, Eun-Ju;Lee, Young-Kyun;Kang, Sam-Sik;Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.890-897
    • /
    • 2006
  • In inflammatory responses, induction of cytokines and other immune regulator genes in macrophages by pathogen-associated signal such as lipopolysaccharide (LPS) plays a crucial role. In this study, the gene expression profile changes by LPS treatment in the macrophage/monocyte lineage cell line RAW264.7 was investigated. A 60-mer oligonucleotide microarray of which probes target 32381 mouse genes was used. A reverse transcription-in vitro translation labeling protocol and a chemileuminescence detection system were employed. The mRNA expression levels in RAW264.7 cells treated for 6 h with LPS and the control vehicle were compared. 747 genes were up-regulated and 523 genes were down-regulated by more than 2 folds. 320 genes showing more than 4-fold change by LPS treatment were further classified for the biological process, molecular function, and signaling pathway. The biological process categories that showed high number of increased genes include the immunity and defense, the nucleic acid metabolism, the protein metabolism and modification, and the signal transduction process. The chemokine-cytokine signaling, interleukin signaling, Toll receptor signaling, and apoptosis signaling pathways involved high number of genes differentially expressed in response to LPS. These expression profile data provide more comprehensive information on LPS-target genes in RAW264.7 cells, which will be useful in comparing gene expression changes induced by extracts and compounds from anti-inflammatory medicinal herbs.

Analysis of Manifestation of CC and CXC Chemokine Genes in Olive Flounders (Paralichthys olivaceus) Artificially Infected with VHSV during the Early Developmental Stage

  • Kim, Kyung-Hee;Kim, Woo-Jin;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Lee, Seunghyung;Lee, Young Mee;Kim, Hyun Chul
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권4호
    • /
    • pp.341-350
    • /
    • 2018
  • Chemokines is a small protein that plays a major role in inflammatory reactions and viral infections as a chemotactic factor of cytokines involved in innate immunity. Most of the chemokines belong to the chemokine groups CC and CXC. To investigate the immune system of the olive flounder (Paralichthys olivaceus), an expression pattern specifically induced in the early developmental stages of analysis is examined using qRT-PCR. We also examined tissue-specific expression of both CC and CXC chemokine in healthy olive flounder samples. CC and CXC chemokine shows increased expression after immune-related organs are formed compared to expression during early development. CC chemokine was more highly expressed in the fin, but CXC chemokine showed higher expression in the gills, spleen, intestines, and stomach. Spatial and temporal expression analysis of CC and CXC chemokine were performed following viral hemorrhagic septicemia virus (VHSV) infection. CC chemokine showed high expression in the gills, which are respiratory organs, whereas CXC chemokine was more highly expressed in the kidneys, an immune-related organ. These results suggest that CC and CXC chemokine play an important role in the immune response of the olive flounder, and may be used as basic data for the immunological activity and gene analysis of it as well as other fish.

Association with Genetic Polymorphism of rs117033348 and Allergic Disease in Korean Population

  • Kong, Yoonji;Kim, Mingyeong;Jin, Hyun-Seok;Park, Sangjung
    • 대한의생명과학회지
    • /
    • 제27권3호
    • /
    • pp.177-181
    • /
    • 2021
  • Allergy is an immune response that appears in certain people, and reactions such as coughing, shortness of breath, and hives occur. The immune system plays an important role in homeostasis and host defense, and allergies cause hypersensitivity reactions when an imbalance of immunity occurs. Mutations in the TLR genes are associated with autoimmune conditions such as allergies and asthma. It has been reported that a locus in the TLR1-TLR6-TLR10 region may be associated with atopic sensitization or allergy. Therefore, the purpose of this study was to select an allergy patient group and a healthy control group to determine how the genetic mutation of TLR1 affects the onset of disease. This study was conducted in 709 patients and 5,025 control groups out of 10,956 patients with data from KARE and HEXA cohorts. As a result of logistic regression analysis of 6 SNPs selected from the TLR1 gene, only rs117033348 showed a statistically significant correlation (P = 0.002356). The influence of rs117033348 was examined using PolyPhen-2, and a significant result was shown. Therefore, it can be predicted that the G base in rs117033348 will have an influence on the human body. In addition, Geography of Genetic Variants browser was used to confirm the geographical distribution of allele frequencies for the TLR1 gene. Although it was found that there was a large racial difference in the prevalence of TLR1 SNP, it could be confirmed that the polymorphism of rs117033348 conducted in this study was only specific in East Asia when compared with each race.