• 제목/요약/키워드: immune-stimulatory agent

검색결과 9건 처리시간 0.03초

Comparative Study of Immune-Enhancing Activity of Crude and Mannoprotein-Free Yeast-Gluean Preparations

  • Kim, Hye-Nam;Lee, Jung-Nam;Kim, Gi-Eun;Ha-Lee, Young-Mie;Kim, Chan-Wha;Sohn, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.826-831
    • /
    • 1999
  • ${\beta}-Glucan$, one of the major cell wall components of Saccharomyces cerevisiae, is known to enhance the immune function, especially by activating macrophages. Accordingly, in an effort to develop a safe and efficient immune stimulatory agent, we prepared crude ${\beta}-glucan$ (glucan-p1) and partially purified ${\beta}-glucan$ that was free of mannoproteins (glucan-p2), and evaluated their effect on both the macrophage function and resistance to E. coli-induced peritonitis. To investigate the function of the macrophages, phagocytosis, $TNF-{\alpha}$ secretion, oxygen burst, and the expression of cytokine genes such as $IFN-{\gamma}$ and IL-12 were analyzed. Glucan-p2 markedly stimulated the macrophages with all these parameters. Glucan-p1, however, did not stimulate phagocytosis, yet it induced $TNF-{\alpha}$ secretion, oxygen burst, and the expression of $IFN-{\gamma}$ and IL-12, although less efficiently than glucan-p2. Finally, to test the in vivo protective effect of {\beta}-glucan against infection, the survival of mice from E. coli-induced peritonitis was investigated. After 24 h of the peritoneal challenge of E. coli, all of the mice treated with glucan-p2 survived whereas none survived in the control group. Glucan-p1 showed only a marginal effect in protecting the mice. These results suggest that mannoprotein-free gluean-p2, but not gluean-p1, can serve as an effective immune-stimulating agent.

  • PDF

Immune Enhancement Effects of Codium fragile Anionic Macromolecules Combined with Red Ginseng Extract in Immune-Suppressed Mice

  • Kim, Ji Eun;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, Sang-Guan;Lee, Sang-min;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1361-1368
    • /
    • 2019
  • Codium fragile is an edible seaweed in Asian countries that has been used as a thrombolytic, anticoagulant, antioxidant, anti-inflammatory, and immune-stimulatory agent. Ginseng has also been known to maintain immune homeostasis and to regulate the immune system via enhancing resistance to diseases and microorganisms. In this study, anionic macromolecules extracted from C. fragile (CFAM) were orally administered with red ginseng extract (100 mg/kg body weight) to cyclophosphamide-induced immunosuppressed male BALB/c mice to investigate the immune-enhancing cooperative effect of Codium fragile and red ginseng. Our results showed that supplementing CFAM with red ginseng extract significantly increased spleen index, T- and B-cell proliferation, NK cell activity, and splenic lymphocyte immune-associated gene expression compared to those with red ginseng alone, even though a high concentration of CFAM with red ginseng decreased immune biomarkers. These results suggest that CFAM can be used as a co-stimulant to enhance health and immunity in immunosuppressed conditions.

Ginsan Improved Th1 Immune Response Inhibited by Gamma Radiation

  • Han Seon Kyu;Song Jie Young;Yun Yeon Sook;Yi Seh Yoon
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.343-350
    • /
    • 2005
  • Gamma radiation causes suppression of the immune function, and immune properties are related to cytokine production. In the present study, the polysaccharide, Ginsan, purified from an ethanol-insoluble fraction of Ginseng (Panax ginseng C.A. Meyer, Araliaceae) water extract was studied to assess its effects on the immunosuppressive activities of gamma radiation. Gin­san was found to stimulate murine normal splenocytes by inducing the mRNA expressions of Th1 and Th2 type cytokines, and also restore the mRNA expression of IFN-$/gamma$, Th1 cytokine, after its inhibition by whole-body gamma irradiation. Therefore, Ginsan was found to restore the T lymphocytes function that had been suppressed by gamma irradiation in allogenic MLR (mixed lymphocyte reactions). However, Ginsan exhibited no excessive stimulatory effects on the control group. The above results indicated that Ginsan may constitute a new noble agent for the improvement of gamma radiation-induced immunosuppression.

Heat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects via Activation of MAPK and STAT3 Pathways

  • Jeong, Minju;Kim, Jae Hwan;Yang, Hee;Kang, Shin Dal;Song, Seongbong;Lee, Deukbuhm;Lee, Ji Su;Park, Jung Han Yoon;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1248-1254
    • /
    • 2019
  • Identification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of $TNF-{\alpha}$ and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, $NF-{\kappa}B$, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of $TNF-{\alpha}$ by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.

Immunostimulatory Effects of Cordyceps militaris on Macrophages through the Enhanced Production of Cytokines via the Activation of NF-${\kappa}B$

  • Shin, Seul-Mee;Kwon, Jeong-Hak;Lee, Sung-Won;Kong, Hyun-Seok;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제10권2호
    • /
    • pp.55-63
    • /
    • 2010
  • Background: Cordyceps militaris has been used in traditional medicine to treat numerous diseases and has been reported to possess both antitumor and immunomodulatory activities in vitro and in vivo. However, the pharmacological and biochemical mechanisms of Cordyceps militaris extract (CME) on macrophages have not been clearly elucidated. In the present study, we examined how CME induces the production of proinflammatory cytokines, transcription factor, and the expression of co-stimulatory molecules. Methods: We confirmed the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecules. Results: CME dose dependently increased the production of NO and proinflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, and $PGE_2$, and it induced the protein levels of iNOS, COX-2, and proinflammatory cytokines in a concentrationdependent manner, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as ICAM-1, B7-1, and B7-2 was also enhanced by CME. Furthermore, the activation of the nuclear transcription factor, NF-${\kappa}B$ in macrophages was stimulated by CME. Conclusion: Based on these observations, CME increased proinflammatory cytokines through the activation of NF-${\kappa}B$, further suggesting that CME may prove useful as an immune-enhancing agent in the treatment of immunological disease.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제9권3호
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Immunomodulatory Effects of Dioscoreae Rhizome Against Inflammation through Suppressed Production of Cytokines Via Inhibition of the NF-${\kappa}B$ Pathway

  • Kim, Seulah;Shin, Seulmee;Hyun, Bobae;Kong, Hyunseok;Han, Shinha;Lee, Aeri;Lee, Seungjeong;Kim, Kyungjae
    • IMMUNE NETWORK
    • /
    • 제12권5호
    • /
    • pp.181-188
    • /
    • 2012
  • Dioscoreae Rhizome (DR) has been used in traditional medicine to treat numerous diseases and is reported to have anti-diabetes and anti-tumor activities. To identify a bioactive traditional medicine with anti-inflammatory activity of a water extract of DR (EDR), we determined the mRNA and protein levels of proinflammatory cytokines in macrophages through RT-PCR and western blot analysis and performed a FACS analysis for measuring surface molecules. EDR dose-dependently decreased the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, and $PGE_2$, as well as mRNA levels of iNOS, COX-2, and pro-inflammatory cytokines, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 was also reduced by EDR. Furthermore, activation of the nuclear transcription factor, NF-${\kappa}B$, but not that of IL-4 and IL-10, in macrophages was inhibited by EDR. These results show that EDR decreased pro-inflammatory cytokines via inhibition of NF-${\kappa}B$-dependent inflammatory protein level, suggesting that EDR could be a useful immunomodulatory agent for treating immunological diseases.

IgA 항체합성에 대한 초유함유 TGF-${\beta}$ 와 bifidobacteria의 영향 평가

  • 김평현;고준수
    • 한국축산식품학회:학술대회논문집
    • /
    • 한국축산식품학회 2001년도 임시총회 및 제28차 추계학술발표회
    • /
    • pp.43-56
    • /
    • 2001
  • Colostrum contains various kinds of cytokines including TGF-${\beta}$ which is known to be multifunctional in immune response and act as an anti-inflammatory agent. First, we measured the amount of TGF-${\beta}$ in bovine and human colostrum. Expression pattern of TGF-${\beta}$ isotypes was dramatically different between human and bovine colostrial samples. Bovine colostrum collected on day 1 post-delivery retained $41.79{\pm}16.96ng/ml$ of TGF-${\beta}$ 1 and $108.4{\pm}78.65ng/ml$ of TGF-${\beta}$ 2 while in human, $284{\pm}124.75ng/ml$ of TGF-${\beta}$ 1 and $29.75{\pm}6.73ng/ml$ of TGF-${\beta}$ 2. Thus, TGF-${\beta}$ is the predominant TGF-${\beta}$ isotype in bovine colostrum and vice versa in human colostrum. Both TGF-${\beta}$ isotypes diminished significantly in human and bovine colostrum with time. Next, biological activity of colostrial samples was examined in vitro. Both human and bovine colostrum increased IgA synthesis by LPS-activated mouse spleen B cells, which is a typical effect of TGF-${\beta}$ on the mouse B cell differentiation. Futhermore, we found that anti-proliferative activity in MV1LU cells by colostrum samples disappeared by addition of anti-TGF-${\beta}$ 1 and anti-TGF-${\beta}$ 2 antibody. In conclusion, there are substantial amounts of biologically active TGF-${\beta}$ 1 and TGF-${\beta}$ 2 in bovine and human colostrum. The results that the colostrum can increase IgA expression has important implications since IgA is the major Ig class produced in the gastrointestinal tract. We have previously shown that the stimulatory effect of Bifidobacteria bifidum on spllen B cells was quite similar to that of LPS which is a well-known polyclonal activator for murine B cells. In the present study, we further asked whether B. bifidum regulate the synthesis of IgA by mucosal lymphoid cells present in Peyers patches (PP) and mesenteric lymph nodes (MLN). B. bifidum alone, but not C. perfringens, significantly induced overall IgA and IgM synthesis by both MLN and PP cells. This observation indicates that B. bifidum possesses a modulatory effect on the mucosal antibody production in vivo. We, therefore, investigated the mucosal antibody prodduction following peroral administration of B. bifidum to mice. Ingested B. bifidum significantly increased the numbers of Ig (IgM, IgG, and IgA) secreting cells in the culture of both MLN and spleen cells, indicating that peroally introduced B. bifidum enhances mucosal and systemic antibody response. Importantly, however, B. bifidum itself does not induce the own specific antibody responses, implying that B. bifidum do not incite any unwanted immune reaction. Subsequently, it was found that excapsulation of B. bifidum further augments the total IgA production by increasing the number of IgA-secreting cells in the culture of both MLN and spleen cells. Finally, we found that the immuno-stimulating activity of B. bifidum is due to its cell wall components but not due to any actively secreting component(s) from bacteria. Thus our data reveal that peroral administration of B. bifidum can enhance intestinal IgA production and that encapsulation of B. bifidum further reinforces the IgA production.

  • PDF

황기 추출물이 5-Fluorouracil을 투여한 생쥐의 골수억제 및 삶의 질에 미치는 영향 (Effect of Astragalus Membranaceus Extract against Improvement of Myelosuppression and Quality of Life in 5-Fluorouracil Treated Mice)

  • 권창현;유화승;방선휘;이영민;이연월;손창규;조종관
    • 대한한방내과학회지
    • /
    • 제28권2호
    • /
    • pp.304-320
    • /
    • 2007
  • 목적 : 황기추출물이 생쥐의 5-FU로 유발된 골수억제와 삶의 질 저하의 개선에 미치는 효과를 연구하고자 한다. 방법 : 골수억제에 미치는 영향이 평가를 위해 Complete Blood Count, Histological Analysis of BM, Cell Colony Forming Assay for Hematopoietic Progenitor를 시행하고, 삶의 질에 미치는 영향을 평가하기 위해 Swimming Test, Survival Rate, Nitric Oxide (NO) Assay, $^{51}Cr$ Release Assay in NK Cell, mRNA Expressions of $IL-1{\beta}$, IL-2, IL-4, IL-6, IL-10, $TNF-{\alpha}$, $IFN-{\gamma}$, $TGF-{\beta}$ and GM-CSF in Spleen Cells를 시행하였다. 결과 : 황기추출물을 골수억제를 호전시켜 말초혈액수치를 회복시키고, 골수파괴를 보호하는 효과를 보이며, 대조군에 비해 혈구생성을 촉진시키며, 대조군에 비해 생존율과 수영시간을 증가시키며, 대식세포와 자연살상세포의 활동성을 증가시키며, 종양면역과 관련된 싸이토카인(IL-2, IL-6, $IFN-{\gamma}$)의 발현을 증가시켰다. 결론 : 5-FU로 유발된 골수억제와 삶의 질 저하의 개선에 미치는 황기추출물의 유용성이 기대되며 향후 이에 대한 지속적인 연구가 필요할 것으로 사료된다.

  • PDF