• Title/Summary/Keyword: immune-electron microscopy

Search Result 51, Processing Time 0.028 seconds

An Immune-Electron Microscopic Study of the Apoptotic Cell during Mouse Knee Joint Development (생쥐 무릎관절 공간 발생에 있어 아포프토시스 세포에 관한 면역전자현미경적 연구)

  • Chae, Hee-Sun;Kim, Kyung-Yong;Lee, Won-Bok;Lim, Hyoung-Soo;Hwang, Douk-Ho;Chang, Ka-Yong
    • Applied Microscopy
    • /
    • v.28 no.1
    • /
    • pp.107-119
    • /
    • 1998
  • This study was designed to investigate the appearence and the characteristics of the apoptotic cells and the process of the joint cavity formation in mouse knee joint. Fetal mouse knee joints from 15 to 19 days of gestation were used. Paraffin-embedded serial sections, stained with H & E for light microscopic observation, Epon 812 embedded thin sections for electron microscopic observation and Lowicryl HM 20 embedded thin sections for immune-electron microscopic observation were prepared. Monoclonal antibodies to $\beta-tubulin$ and polyclonal antibodies to tissue transglutaminase were used for immune-electron microscopic study. The results obtained were as follows. 1. At 15 days of gestation, blood vessels, which have invaded in the mesenchymal cells, were present in the synovium, to form the joint cavity in the future. 2. At 16 days of gestation, the joint cleft was first appeared and several RBCs were present in the joint cleft. The invasion of blood vessels into the joint cleft was continuing, and apoptotic cells were present in the inner cell layer, adjacent to the joint cleft. Necrotic cells were also present in the outer cell layer; they were present 18 days of gestation, but apoptotic cells did not appear after 17 days of gestation. 3. In the apoptotic cells, transglutaminase were localized around vacuoles and the marginal site of the cytoplasm. 4. In the apoptotic cells, tubulin was around the endoplasmic reticulum and the marginal site of the cytoplasm. In the late stage of apoptotic cells, tubulin was localized diffusely in the cytoplasm. Tubulin was also strongly labeled around in the cytoplasm of the neighboring cell at which the apoptotic body was phagocytosed. Tubulin labeled particles were apparently increased in the seperated apoptotic bodies. On the basis of the above findings, it is proposed that during the development of the mouse knee joint, blood vessel invasion first occurs and then apoptosis and cell necrosis follow it. In the apoptotic cell, present in the synovium of the developing knee joint of the mouse. it is suggested that the redistribution of tubulin is associated with apoptotic process. And transglutaminase overexpressed in the apoptotic cell.

  • PDF

Detection and Localization of a Muramidase type-2 Autolysin in Cell Walls of Lactobacillus delbrueckii ssp. bulgaricus.

  • Kang, Ok-Ju
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.145-146
    • /
    • 2000
  • The presence of cross-reacting muramidase in Lactobacillus delbrueckii ssp. bulgaricus ULl2 was shown by using monoclonal antibodies raised against an muramidase-2 of Enterococcus hirae ATCC 9790. The separation of protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western immunoblot confirmed the presence of one cross-reacting band in Enterococcus hirae with an estimated molecular mass of 80 kDa, L. bulgaricus cultured cells harvested after 4 and 12 h were submitted to different autolysin releasing procedures and the liberated products were allowed to cross-react with muramidase-2 antibodies in order to estimate the efficiency of each treatment. Although the cultured cells harvested after 4 h yielded only a slight immune-reaction in Western immunoblots against these enzyme monoclonal antibodies, a strong signal was observed for the cell walls obtained from the same experimental conditions and treated with Triton X-100 surfactant. The same phenomenon was also observed by light fluorescence microscopy. Immune-labelling followed by optical and electron microscopy have shown that the muramidase-2 of L. bulgaricus ULl2 was essentially localized in the innermost part of the cell wall.(omitted)

  • PDF

Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14

  • Kim, Soo Jin;Kim, Ho Min
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.55-57
    • /
    • 2017
  • Toll-like receptor 4 (TLR4) together with MD2, one of the key pattern recognition receptors for a pathogen-associated molecular pattern, activates innate immunity by recognizing lipopolysaccharide (LPS) of Gram-negative bacteria. Although LBP and CD14 catalyze LPS transfer to the TLR4/MD2 complex, the detail mechanisms underlying this dynamic LPS transfer remain elusive. Using negative-stain electron microscopy, we visualized the dynamic intermediate complexes during LPS transfer-LBP/LPS micelles and ternary CD14/LBP/LPS micelle complexes. We also reconstituted the entire cascade of LPS transfer to TLR4/MD2 in a total internal reflection fluorescence (TIRF) microscope for a single molecule fluorescence analysis. These analyses reveal longitudinal LBP binding to the surface of LPS micelles and multi-round binding/unbinding of CD14 to single LBP/LPS micelles via key charged residues on LBP and CD14. Finally, we reveal that a single LPS molecule bound to CD14 is transferred to TLR4/MD2 in a TLR4-dependent manner. These discoveries, which clarify the molecular mechanism of dynamic LPS transfer to TLR4/MD2 via LBP and CD14, provide novel insights into the initiation of innate immune responses.

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

Ultrastructural Localization of Mercury in Spleen of the Mouse (마우스 비장내 수은의 미세구조적 위치)

  • Cho, Hyun-Wook;Kim, Myung-Hoon;Yee, Sung-Tae
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.551-561
    • /
    • 1998
  • The autometallographic method was used to demonstrate the localization of mercury deposits in spleen of mouse. The mercury deposits were identified with the light and electron mocroscope. Mice were treated with methylmercuric chloride in the drinking water (demineralized water) for 40 days. Control and mercury treated groups showed no significant differences in mean body weight and spleen weight per one mouse. Mercury grains were appeared in the germinal center of white pulp consist of a preponderancing lymphocytes, not in red pulp and capsule. At the ultrastructural level, mercury deposits were restricted to lysosomes of macrophage and lymphocyte. Specially, volume in lysosomes of the macrophage was increased. These results suggest that mercury localization in lysosomes is associated with the change of immune activity.

  • PDF

Identification of surface antigen of Trichomonas vaginalis (질편모충의 표면항원 분석)

  • 민득영;임미혜
    • Parasites, Hosts and Diseases
    • /
    • v.32 no.4
    • /
    • pp.243-248
    • /
    • 1994
  • Plasma membrane proteins of a Korean isolate of Trichomonus vofinalis HY-1 were fractionated for antigen analysis. Homogenates of T. vaginalis were fractionated by the differential centrifugation using sucrose step-gradient method. The interface layer from the 25%/45% sucrose was collected as a plasma membrane fraction and its purity was examined by transmission electron microscopy. The antigenicity of plasma membrane fraction was analysed by enzyme-linked immunoelectrotransfer blot technique with immune rabbit serum and compared with surface antigen labelled with N. hydroxysuccinimide-biotin. The fluffy fraction of 25%/45% sucrose interface was homogeneous and membrane particles were present as extended sheet and concentric vesicles showing typical trilamellar appearance under transmission electron microscope. Seven fractions at 40, 50, 60, 110, 130, 140 and 150 kDa were identified as the antigenic membrane proteins in EITB with anti HY-1 rabbit serum. The common band at 60 kDa was detected both in antigenic fractions of plasma membrane and surface protein labelled with NHS-biotin. This result indicates that this protein is considered as a major surface antigen of T. vaginalis. The role of this surface antigen at 60 kDa should be studied further.

  • PDF

A Study on the Localization of Neurofascin in the Myelinated Rat Sciatic Nerve Fibers (랫드 수초좌골신경섬유에서 Neurofascin분포에 대한 면역세포화학적 연구)

  • Chang, Byung-Hwa;You, Kwan-Hee;Lee, Jong-Hwan;Cho, Ik-Hyun;Bae, Chun-Sik;Park, Chang-Hyun;Han, Jeong-Mi;Choe, Nong-Hoon;Chang, Byung-Joon
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.131-140
    • /
    • 2006
  • Neurofascin, one of the members of L1CAM, has been known to have some important roles during the development of nerve fibers. In order to investigate the role of neurofascin associated with the myelination of peripheral nerves, the localization of neurofascin in myelinated rat sciatic nerve fibers was studied with the immuno-fluorescence and immune-electron microscopy and the results are as follows; 1. According to the myelination is going on, neurofascin localization was dramatically changed in the sciatic nerve fibers. 2. In the myelinated fibers, neurofascin was weakly localized along the axolemma at the node of Ranvier. 3. Neurofascin was also apparantly localized at the non-compact area of Schwann cell membrane such as paranodal loop, Schmidt-Lantermann incisure, inner & outer mesaxons in the myelinated fibers. From the above results, neurofascin is likely to have a role to sustain the ideal gap of apposing membranes of Schwann cell, so it may enable to materials transport in the myelin sheath.

Fabrication of Au Nanoparticle for Au-conjugate Immuno Chemistry Probe (Au-conjugate 면역화학 진단용 금 나노입자 제조)

  • Park, Sung-Tae;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.550-554
    • /
    • 2003
  • Current nanogold cluster synthesized by chemical routine with 11 or 55 atoms of gold has been widely used for immuno chemistry probe as a form of nanocluster conjugated with biomolecules. It would be an undeveloped region that the 1 nm size of nanogold could be made by materials engineering processing. Therefore, objective of this study is to minimize the size of gold nanocluster as a function of operating temperature and chamber pressure in inert gas condensation (IGC) processing. Evaporation temperature was controlled by input current from 50 A to 65 A. Chamber pressure was controlled by argon gas with a range of 0.05 to 2 torr. The gold nanocluster by IGC was evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The gold nanocluster for TEM analysis was directly sampled with special in-situ method during the processing. Atomic force microscopy (AFM) was used to observe 3-D nanogold layer surfaces on a slide glass for the following biomolecule conjugation step. The size of gold nanoclusters had a close relationship with the processing condition such as evaporation temperature and chamber pressure. The approximately 1 nm size of nanogold was obtained at the processing condition for 1 torr at $1124 ^{\circ}C$.

An Immune-Electron Microscopic Study for Cluster Designation on the Phagocytic Synovial Cells in the Knee Joint of the Human (인체 무릎관절 윤활포식세포 cluster designation 표지에 관한 면역전자현미경적 연구)

  • Lim, Hyoung-Soo;Cho, Kook-Hyeung;Kim, Yong-Wook;Park, Kyeong-Han;Hwang, Young-Il;Chang, Ka-Young;Hwang, Douk-Ho
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.173-183
    • /
    • 2000
  • This study was designed to observe the ultrastructural localization of synoviocytes, which are concerned with the function of phagocytic synovial cells (type A synoviocytes, macrophage-like synoviocytes), in the knee joint of the human for CD14 and CD105 by cryo-immune-electron microscopic technique. The synovium were dissected and fixed for two hours (in 4% paraformaldehyde and 0.1% glutaraldehyde mixture), and were immerged in 2.3 M sucrose and 20% PVP solution. Finally, they were cut with the cryoultramicrotome and labelled with primary antibodies (monoclonal mouse anti-human CD14, monoclonal mouse anti-human CD105 (endoglin) and secondary (donkey anti-mouse IgG) tagged with 6 nm colloidal gold particles. The tissues were observed under transmission electron microscope. This study was resulted as follows. 1. In the synovium of the human knee joint, CD14+ cells were identified. These cells showed phagocytic synovial cell's features. In the phagocytic synoviocyte, the distributions of CD14 were marked in the cytoplasm, around vacuoles, and in cytoplasmic process, but not detected inside of vacuoles. 2. In the synovium of the human knee joint, CD105+ cells were identified. These cells were recognized endothelial cells and phagocytic synovial cells. In the phagocytic synovial cells, the distributions of CD105 (endoglin) were marked in cytoplasic process, around vacuoles, and in cell membrane, but not detected inside of vacuoles. On the basis of above findings, it is obvious that phagocytic synovial cells were marked at CD 14 and CD 105, and might be play the role of activated macrophages or phagocytes in the synovial membrane.

  • PDF

Biological Response Modifiers Influence Structure Function Relationship of Hematopoietic Stem and Stromal Cells in a Mouse Model of Leukemia

  • Basu, Kaustuv;Mukherjee, Joydeep;Law, Sujata;Chaudhuri, Samaresh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2935-2941
    • /
    • 2012
  • Biological response modifiers (BRMs) can alter interactions between the immune system and cancer cells to boost, direct, or restore the body's ability to fight disease. Mice with ethylnitrosourea- (ENU) induced leukemia were here used to monitor the therapeutic efficacy of lipopolysaccaride (LPS), Bacillus Calmette Guerin (BCG) and sheep erythrocytes (SRBC). Flow cytometry based CD34+ positivity analysis, clonogenicity, proliferation and ultrastructure studies using scanning electron microscopy (SEM) of stem cells in ENU induced animals with and without BRMs treatment were performed. BRMs improved the stem-stromal relationship structurally and functionally and might have potential for use as an adjunct in human stem cell therapy.