• Title/Summary/Keyword: immiscible V-Cu system

Search Result 2, Processing Time 0.014 seconds

Phase Analysis of Immiscible V-Cu MA Powders by Neutron and X-ray Diffraction (비고용 V-Cu계 MA합금의 중성자 및 X선 회절에 의한 상분석)

  • Lee Chung-Hyo;Cho Jae-Moon;Lee Sang-Jin;Kim Ji-Soon
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.348-352
    • /
    • 2004
  • The mechanical alloying (MA) effect in immiscible V-Cu system with positive heat of mixing was studied by not only the neutron and X-ray diffraction but also the analysis of DSC spectra. The total energy, ΔHt accumulated during MA for the mixture of $V_{50}$ $Cu_{50}$ / powders increased with milling time and approached the saturation value of 14 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the amorphous phase and the pure V and Cu powders with an atomic ratio 5:5 is estimated to be 11 kJ/mol by Miedema et al. This is thermodynamically taken as one of the evidences for the amorphization. The structural changes of V-Cu MA powders were characterized by the X-ray diffraction and neutron diffraction. We take a full advantage of a negligibly small scattering length of the V atom in the neutron diffraction measurement. The neutron diffraction data definitely indicate that the amorphization proceeds gradually but incompletely even after 120 h of MA and bcc-Cu Bragg peaks appears after 60 h of MA.

Mechanical Alloying Effect in Immiscible Cu-Based Alloy Systems.

  • Lee, Chung-Hyo;Lee, Seong-Hee;Kim, Ji-Soon;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.164-167
    • /
    • 2003
  • The mechanical alloying effect has been studied on the three Cu-based alloy systems with a positive heat of mixing. The extended bcc solid solution has been formed in the Cu-V system and an amorphous phase in the Cu-Ta system. However, it is round that a mixture of nanocrystalline Cu and Mo Is formed in the Cu-Mo system. The neutron diffraction has been employed at a main tool to characterize the detailed amorphization process. The formation of an amorphous phase in Cu-Ta system can be understood by assuming that the smaller Cu atoms preferentially enter into the bcc Ta lattice during ball milling.