• Title/Summary/Keyword: imaging device

Search Result 619, Processing Time 0.023 seconds

Effects of Electrical Muscle Stimulation for Preventing Deltoid Muscle Atrophy after Rotator Cuff Repair: Preliminary Results of a Prospective, Randomized, Single-blind Trial

  • Lee, Goo Joo;Cho, Hangyeol;Ahn, Byung-Hyun;Jeong, Ho-Seung
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.4
    • /
    • pp.195-202
    • /
    • 2019
  • Background: This study investigates the effects of neuromuscular electrical stimulation (NMES) in preventing deltoid atrophy during the first 12 weeks after arthroscopic rotator cuff repair. Methods: Eighteen patients undergoing arthroscopic repair of a medium-sized rotator cuff tear by a single surgeon, were randomized into two groups: NMES and transcutaneous electrical nerve stimulation (TENS). Each group used the respective device for 6 weeks after surgery. Pain was measured at baseline, 6, and 12 weeks postoperatively, using the visual analogue scale (VAS); range of motion (ROM), abduction strength and functional scores were measured at baseline and 12 weeks postoperatively. Deltoid thickness and cross-sectional areas were measured using magnetic resonance imaging at 12 weeks postoperatively. Results: At 12 weeks post-surgery, no statistically significant difference was observed between the NMES and TENS groups in the pain VAS, the Disabilities of the Arm, Shoulder and Hand score, ROM, and abduction strength. Postoperative decrease in the thickness of the anterior, middle, and posterior deltoid, at the level just below the coracoid, was -2.5%, -0.7%, and -6.8%, respectively, in the NMES group, and -14.0%, -2.6%, and -8.2%, respectively, in the TENS group (p=0.016, p=0.677, and p=0.791, respectively). At the level of the inferior glenoid tubercle, postoperative decrease in area of the deltoid was -5.4% in the NMES group and -14.0% in the TENS group, which was significantly different (p=0.045). Conclusions: NMES has the potential for reducing deltoid atrophy after arthroscopic rotator cuff repair, suggesting that NMES might help minimize postoperative atrophy after various shoulder surgeries.

Development of weight prediction 2D image technology using the surface shape characteristics of strawberry cultivars

  • Yoo, Hyeonchae;Lim, Jongguk;Kim, Giyoung;Kim, Moon Sung;Kang, Jungsook;Seo, Youngwook;Lee, Ah-yeong;Cho, Byoung-Kwan;Hong, Soon-Jung;Mo, Changyeun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.753-767
    • /
    • 2020
  • The commercial value of strawberries is affected by various factors such as their shape, size and color. Among them, size determined by weight is one of the main factors determining the quality grade of strawberries. In this study, image technology was developed to predict the weight of strawberries using the shape characteristics of strawberry cultivars. For realtime weight measurements of strawberries in transport, an image measurement system was developed for weight prediction with a charge coupled device (CCD) color camera and a conveyor belt. A strawberry weight prediction algorithm was developed for three cultivars, Maehyang, Sulhyang, and Ssanta, using the number of pixels in the pulp portion that measured the strawberry weight. The discrimination accuracy (R2) of the weight prediction models of the Maeyang, Sulhyang and Santa cultivars was 0.9531, 0.951 and 0.9432, respectively. The discriminative accuracy (R2) and measurement error (RMSE) of the integrated weight prediction model of the three cultivars were 0.958 and 1.454 g, respectively. These results show that the 2D imaging technology considering the shape characteristics of strawberries has the potential to predict the weight of strawberries.

Characteristics of radiographic images acquired with CdTe, CCD and CMOS detectors in skull radiography

  • Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Lopes, Sergio Lucio Pereira de Castro;Haiter-Neto, Francisco;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.339-346
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the image quality, diagnostic efficacy, and radiation dose associated with the use of a cadmium telluride (CdTe) detector, compared to charge-coupled device (CCD) and complementary metal oxide semiconductor(CMOS) detectors. Materials and Methods: Lateral cephalographs of a phantom (type 1) composed of synthetic polymer filled with water and another phantom (type 2) composed of human skull macerated with polymer coating were obtained with CdTe, CCD, and CMOS detectors. Dosimeters placed on the type 2 phantom were used to measure radiation. Noise levels from each image were also measured. McNamara cephalometric analysis was conducted, the dentoskeletal configurations were assessed, and a subjective evaluation of image quality was conducted. Parametric data were compared via 1-way analysis of variance with the Tukey post-hoc test, with a significance level of 5%. Subjective image quality and dentoskeletal configuration were described qualitatively. Results: A statistically significant difference was found among the images obtained with the 3 detectors(P<0.05), with the lowest noise level observed among the images obtained with the CdTe detector and a higher subjective preference demonstrated for those images. For the cephalometric analyses, no significant difference (P>0.05) was observed, and perfect agreement was seen with regard to the classifications obtained from the images acquired using the 3 detectors. The radiation dose associated with the CMOS detector was higher than the doses associated with the CCD (P<0.05) and CdTe detectors(P<0.05). Conclusion: Considering the evaluated parameters, the CdTe detector is recommended for use in clinical practice.

Extremely High-Definition Computer Generated Hologram Calculation Algorithm with Concave Lens Function (오목 렌즈 함수를 이용한 초 고해상도 Computer generated hologram 생성 기법)

  • Lee, Chang-Joo;Choi, Woo-Young;Oh, Kwan-Jung;Hong, Keehoon;Choi, Kihong;Cheon, Sang-Hoon;Park, Joongki;Lee, Seung-Yeol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.836-844
    • /
    • 2020
  • A very large number of pixels is required to generate a computer generated hologram (CGH) with a large-size and wide viewing angle equivalent to that of an analog hologram, which incurs a very large amount of computation. For this reason, a high-performance computing device and long computation time were required to generate high-definition CGH. To solve these problems, in this paper, we propose a technique for generating high-definition CGH by arraying the pre-calculated low-definition CGH and multiplying the appropriately-shifted concave lens function. Using the proposed technique, 0.1 Gigapixel CGH recorded by the point cloud method can be used to calculate 2.5 Gigapixels CGH at a very high speed, and the recorded hologram image was successfully reconstructed through the experiment.

Spatial Dose Distribution for C-arm Examination within Operation Room Using Monte Carlo Method (몬테카를로 방법을 이용한 이동형 X선 투시검사 시 수술실 내 공간선량평가)

  • Kim, Jung-Hoon;Shin, Eom-Hyeon
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.205-210
    • /
    • 2021
  • The purpose of this study was to analyze the spatial dose according to the distance by location of medical workers when using a mobile X-ray fluoroscopy device in the operating room through a simulation experiment. The MCNPX program was used for the simulation, and the location of medical workers was set around the operating table, and the spatial dose distribution according to the distance and changes in imaging conditions was evaluated. As a result, The highest score was 2.74×10-4 mGy, 2.72×10-4 mGy, and 1.18×10-4 mGy based on the 10 cm distance from the operating table. Spatial dose depending on the distance 100cm, A point 5.15×10-5 mGy is decreased 19% of 10cm, D point 5.12×10-5 mGy, 19 % of 10cm, and G pint, 1.73×10-5 mGy is reduced by 15% of 10cm. Based on this study, medical-related workers directly or indirectly participating in surgery carry potential risks of radiation exposure during surgery, but there are difficulties in radiation protection due to the nature of their work. Therefore, efforts to reduce exposure suitable for the operating room environment will be required.

Direction detection technique of radioactive contaminants based on rotating collimator (회전형 콜리메이터 기반 방사능 오염원의 방향탐지 기법)

  • Hwang, Young-Gwan;Song, Keun-Young;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1519-1527
    • /
    • 2020
  • AGeneral radiation measuring devices have been developed in the form of spatial dose rate detection devices that measure dose rates to radioactive contaminant and 2D or 3D imaging devices for radioactive contamination information. Each of these radiation detection techniques has advantages. The advantages of both detection devices are necessary to minimize personal injury and rapid decontamination in the area of a radioactive accident. In this paper, we proposed a technique that can measure the dose rate and direction information about the radioactive pollutant source in real time using a detection sensor, a rotating body, and a directional shield for radioactive pollutant detection. The rotational-based detection device is configured to check the dose rate and direction using the location information of the rotator and measurement value. We proposed a measurement technique for vertical and horizontal directions through multiple holes. It was confirmed that the measurement error for direction information was less than 1% when detected in the horizontal direction.

Analysis of breast shielding rate of bismuth shield (비스무스 차폐체의 유방 차폐율 분석)

  • Kim, Jae Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1132-1137
    • /
    • 2020
  • In order to reduce unnecessary exposure doses generated when mammography is performed using a mammography device, a shielding ratio analysis was performed when a self-made shielding body made of bismuth was applied to the breast opposite to the imaging site. In order to determine the scattering dose of uncompressed breasts during CC and MLO tests when the right and left are compressed, the experiment is divided into when bismuth is not shielded (Not used: NU group) and when shielded (Used: U group). Proceeded. The average dose of the NU group was 9.568μSv, and the average dose of the U group was 1.038μSv. The average measured dose before and after the use of the bismuth shield was reduced by 89.15%. The use of a bismuth shield for mammography can shield scattered radiation and keep exposure to radiation to a minimum.

Comparison of limited- and large-volume cone-beam computed tomography using a small voxel size for detecting isthmuses in mandibular molars

  • de Souza Tolentino, Elen;Andres Amoroso-Silva, Pablo;Alcalde, Murilo Priori;Yamashita, Fernanda Chiguti;Iwaki, Lilian Cristina Vessoni;Rubira-Bullen, Izabel Regina Fischer;Duarte, Marco Antonio Hungaro
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • Purpose: This study was performed to compare the ability of limited- and large-volume cone-beam computed tomography (CBCT) to display isthmuses in the apical root canals of mandibular molars. Materials and Methods: Forty human mandibular first molars with isthmuses in the apical 3 mm of mesial roots were scanned by micro-computed tomography (micro-CT), and their thickness, area, and length were recorded. The samples were examined using 2 CBCT systems, using the smallest voxels and field of view available for each device. The Mann-Whitney, Friedman, and Dunn multiple comparison tests were performed (α=0.05). Results: The 3D Accuitomo 170 and i-Cat devices detected 77.5% and 75.0% of isthmuses, respectively (P>0.05). For length measurements, there were significant differences between micro-CT and both 3D Accuitomo 170 and i-Cat(P<0.05). Conclusion: Both CBCT systems performed similarly and did not detect isthmuses in the apical third in some cases. CBCT still does not equal the performance of micro-CT in isthmus detection, but it is nonetheless a valuable tool in endodontic practice.

Influence of CBCT metal artifact reduction on vertical radicular fracture detection

  • Oliveira, Mariana Rodrigues;Sousa, Thiago Oliveira;Caetano, Aline Ferreira;de Paiva, Rogerio Ribeiro;Valladares-Neto, Jose;Yamamoto-Silva, Fernanda Paula;Silva, Maria Alves Garcia
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • Purpose: This study evaluated the influence of a metal artifact reduction (MAR) tool in a cone-beam computed tomography (CBCT) device on the diagnosis of vertical root fractures (VRFs) in teeth with different root filling materials. Materials and Methods: Forty-five extracted human premolars were classified into three subgroups; 1) no filling; 2) gutta-percha; and 3) metallic post. CBCT images were acquired using an Orthopantomograph 300 unit with and without a MAR tool. Subsequently, the same teeth were fractured, and new CBCT scans were obtained with and without MAR. Two oral radiologists evaluated the images regarding the presence or absence of VRF. Receiver operating characteristic (ROC) curves and diagnostic tests were performed. Results: The overall area under the curve values were 0.695 for CBCT with MAR and 0.789 for CBCT without MAR. The MAR tool negatively influenced the overall diagnosis of VRFs in all tested subgroups, with lower accuracy (0.45-0.72), sensitivity (0.6-0.67), and specificity (0.23-0.8) than were found for the images without MAR. In the latter group, the accuracy, sensitivity, and specificity values were 0.68-0.77, 0.67-083, and 0.53-087, respectively. However, no significant difference was found between images with and without MAR for the no filling and gutta-percha subgroups (P>0.05). In the metallic post subgroup, CBCT showed a significant difference according to MAR use (P<0.05). Conclusion: The OP 300 MAR tool negatively influenced the detection of VRFs in teeth with no root canal filling, gutta-percha, or metallic posts. Teeth with metallic posts suffered the most from the negative impact of MAR.

Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion

  • Zhang, Shuting;Ji, Yu;Ma, Chunhua
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • Polydimethylsiloxane (PDMS) is one of the most widely adopted silicon-based organic polymeric elastomers. Elastomeric nanostructures are normally required to accomplish an explicit mechanical role and correspondingly their mechanical properties are crucial to affect device and material performance. Despite its wide application, the mechanical properties of PDMS are yet fully understood. In particular, the time dependent mechanical response of PDMS has not been fully elucidated. Here, utilizing state-of-the-art PeakForce Quantitative Nanomechanical Mapping (PFQNM) together with Force Volume (FV) and Fast Force Volume (FFV), the elastic moduli of PDMS samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 Hz up to 2 kHz. Careful calibrations were done. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 878 ± 274 kPa at 0.1 Hz and increased to 4586 ± 758 kPa at 2 kHz. The robust local probing of mechanical measurement as well as unprecedented high-resolution topography imaging open new avenues for quantitative nanomechanical mapping of soft polymers, and can be extended to soft biological systems.