• 제목/요약/키워드: imaginary boundary element

검색결과 12건 처리시간 0.031초

가상경계법에 의한 부소파제의 소파효과 (Wave attenuation effect of the floating breakwater using imaginary boundary element method.)

  • 한일우;윤길수;이귀주
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.94-99
    • /
    • 2002
  • 최근 들어 해양개발에 관심이 고조되면서 심해저의 진출이 늘어날 것으로 보이며 또한 환경에 미치는 영향 등으로 부유식 소파제의 이용이 늘어날 것으로 생각된다. 이러한 부유식 소파제는 고정식 방파제의 문제점을 상당히 해소할 수 있는 반면 아직까지 완전히 이해되고 해결되지 못한 부정적인 면도 가지고 있다. 이에 본 연구는 부유식 소파제의 설계시 이용 가능한 정보를 얻고자 부유식 소파제의 형상과 파수에 따른 투과율에 대해 원형과 사각형 그리고 catamaran을 비교하였으며 사각형에 있어서는 계류삭의 위치에 따른 차이점을 비교하였다. 또한 catamaran 부소 파제의 후면에 catamaran 구조물이 있는 경우 즉, Dual catamaran의 운동에 대해서도 고찰하였다.

  • PDF

Cumulative Angular Distortion Curve of Multi-Pass Welding at Thick Plate of Offshore Structures

  • Ha, Yunsok;Choi, Jiwon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.106-114
    • /
    • 2015
  • In the fabrication of offshore oil and gas facilities, the significance of dimension control is growing continuously. But, it is difficult to determine the deformation of the structure during fabrication by simple lab tests due to the large size and the complicated shape. Strain-boundary method (a kind of shrinkage method) based on the shell element was proposed to predict the welding distortion of a structure effectively. Modeling of weld geometry in shell element is still a difficult task. In this paper, a concept of imaginary temperature pair is introduced to handle the effect of geometric factors such as groove shape, plate thickness and pass number, etc. Single pass imaginary temperature pair formula is derived from the relation between the groove area and the FE mesh size. By considering the contribution of each weld layer to the whole weldment, multi-pass imaginary temperature is also derived. Since the temperature difference represents the distortion increment, cumulative distortion curve can be drawn by integrating the temperature difference. This curve will be a useful solution when engineers meet some problems occurred in the shipyard. A typical example is shown about utilization of this curve. Several verifications are conducted to examine the validity of the proposed methodology. The applicability of the model is also demonstrated by applying it to the fabrication process of the heavy ship block. It is expected that the imaginary temperature model can effectively solve the modeling problem in shell element. It is also expected that the cumulative distortion curve derived from the imaginary temperature can offer useful qualitative information about angular distortion without FE analysis.

에너지 소산 모델을 이용한 잠수된 가동식 방파제의 유체동역학적 성능 수치해석 (Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater Using Energy Dissipation Model)

  • 김도현;구원철
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.287-295
    • /
    • 2012
  • Hydrodynamic performance of a movable submerged breakwater was analyzed using energy dissipation model. Based on two-dimensional boundary element method the equation of motion including a viscous dissipation term proportional to velocity squared was solved by Newton-Raphson method. Energy dissipation coefficients as well as reflection and transmission coefficients of a submerged flat plate were calculated with various plate lengths and thickness. Both real and imaginary components of body displacement and forces were used to solve the motion of breakwater accurately. The effect of the magnitude of dissipation coefficient on the body displacement was evaluated. The results from the potential theory with no dissipation term were found to be an overestimate in resonance frequency.

Computation of dynamic stiffness and flexibility for arbitrarily shaped two-dimensional membranes

  • Chen, J.T.;Chung, I.L.
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.437-453
    • /
    • 2002
  • In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of numerical instability due to division by zero is avoided by choosing additional constraints from the information of real and imaginary parts in the dual formulation. For the overdetermined system, the least squares method is considered to determine the dynamic stiffness and flexibility. A general purpose program has been developed to test several examples including circular and square cases.

혈액정화장치의 현황과 문제점

  • 박한철
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.102-105
    • /
    • 1989
  • In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research.

  • PDF

자기공명촬영상에서 구한 내부 전류밀도를 이용한 임피던스 단층촬영법 (Impedance Tomography using Internal Current Density Distribution Measured by Nuclear Magnetic Resonance)

  • 이수열;우응제;문치웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.413-418
    • /
    • 1994
  • In electrical impedance tomography (EIT), we use boundary current and voltage measurements to provide the information about the cross-sectional distribution of electrical impedance or resistivity One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.7T NMR machine. We implemented a resistivity image reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the image reconstruction algorithm and furture direction of the research.

  • PDF

쉘 요소를 이용한 K및 X개선 용접구조물의 열변형 해석방법에 관한 연구 (A Study on the Thermal Distortion Analysis of Welded Structures having K/X Groove using shell elements)

  • 하윤석;최지원
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.120-125
    • /
    • 2012
  • Because ships and offshore structures have very large dimensions and complicated shapes, it is difficult to determine the deformation or internal stress in the structure by simple lab tests. Thus, a rigorous analysis by using the computer simulation technology is essential for obtaining their distortions by considering the entire production process characteristics. The rapid development of computer technology made it possible to analyze the heat transfer phenomena, deformation and phase transformation in the welded joint. For large shell structures, shell elements modeling contributed primarily to this development. But if a welding is done by multi-pass, shell elements whose thickness are unchangeable can hard to describe the local situation. Recently, it was researched how to introduce the imaginary temperature for V grooved multi-layer butt welding in strain-boundary method (a kind of shrinkage methodologies). In the present study, we formulated the imaginary temperature for the double bevel and double V groove by considering the thickness change of each pass through the bead and the thickness directions simultaneously and also demonstrated the feasibility of the formula by applying it to the thermal distortion analysis of the erection process of crane pedestal.

Re2O3(R=Dy, Gd, Ho)첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구 (A Study on the High Frequency Properties of Mn-Zn ferrite with Re2O3(R=Dy, Gd, Ho) Addition)

  • 최우성
    • 한국전기전자재료학회논문지
    • /
    • 제16권6호
    • /
    • pp.538-548
    • /
    • 2003
  • We studied effects by Re$_2$O$_3$(R=Dy, Gd, Ho) addition on the properties of Mn-Zn ferrite. The doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ceramics. With increasing the rare earth oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. In case of excessive addition of additive beyond some level, initial permeability properties of ferrite have gone down in spite of anomalous grain. With increasing the content of additive, both the real and imaginary component of complex permeability and the magnetic loss (tan$\delta$) increased. Because the increased rate of real component had higher than imaginary component, magnetic loss increased none the less for increasing the real component related with magnetic permeability. But, the magnetic loss of ferrite doped with the rare earth oxides was lower than that of Mn-Zn ferrite at any rate. The small amount of present rare earth oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary. It was seem to be due to the formation of mutual reaction such as between iron ions and rare earth element ions.

전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석 (A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector)

  • 김신호;김준식
    • 한국전산구조공학회논문집
    • /
    • 제37권1호
    • /
    • pp.41-47
    • /
    • 2024
  • 본 논문에서는 전산점근해석기법을 사용하여 복합재료 보에 대한 경계층 해를 계산하고, ANSYS 결과와 비교 검증하였다. 경계층 해는 내부해와 순수 경계층 효과의 합으로 표현되기 때문에, 내부 및 경계층에 대한 수학적으로 엄밀한 정식화를 요구한다. 전산점근 해석기법은 수학적으로 매우 강력한 기법으로, 이러한 문제에 유용하다. 그러나 경계층과 내부 해들의 연결을 시키기 쉽지 않은데, 본 연구에서는 가상일의 원리를 통해 생브낭의 원리와 내부 및 경계층 문제를 체계적으로 분리하였다. 경계층 해는 팝코비치-패들 고유벡터를 계산하여, 실수부와 허수부 벡터들의 선형 조합으로 표현하고, 내부 해의 워핑 함수들을 보상할 수 있도록 최소오차 자승법을 적용하였다. 계산된 해들은 2차원 유한요소 해석 결과와 비교하여 정성적일 뿐만 아니라 정량적으로도 잘 일치하는 결과를 얻었다.

고유변형도를 경계조건으로 갖는 대형 각(殼) 구조물 열변형 해석법 개발 (Development of Thermal Distortion Analysis Method on Large Shell Structure Using Inherent Strain as Boundary Condition)

  • 하윤석
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.93-100
    • /
    • 2008
  • There are two ways of conventional thermal distortion analysis. One is the thermal elasto-plastic analysis and the other is the equivalent forces method based on inherent strain. The former needs exorbitant analysis time, while the latter cannot obtain results of stress field and it needs much time consumption with loads modeling on curved plates. Such faults in two methods have made difficulties in thermal distortion analysis of a large structure like ship hull. In order to solve them, new kind of thermal distortion analysis method was developed. We devised that the inherent strains was used as direct input factors in forms of boundary conditions. It was embodied by using thermal expansion coefficient in commercial code. We used the pre-calculated inherent strain as thermal expansion coefficient, and endowed nodes with imaginary temperatures. This method was already adopted at hull block welding distortion analysis which was considered as impossible, and gave productive results such as reduction of work time in the dry dock.