• Title/Summary/Keyword: image-based

Search Result 17,992, Processing Time 0.036 seconds

Implementation of Annotation-Based and Content-Based Image Retrieval System using (영상의 에지 특징정보를 이용한 주석기반 및 내용기반 영상 검색 시스템의 구현)

  • Lee, Tae-Dong;Kim, Min-Koo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.510-521
    • /
    • 2001
  • Image retrieval system should be construct for searching fast, efficient image be extract the accurate feature information of image with more massive and more complex characteristics. Image retrieval system are essential differences between image databases and traditional databases. These differences lead to interesting new issues in searching of image, data modeling. So, cause us to consider new generation method of database, efficient retrieval method of image. In this paper, To extract feature information of edge using in searching from input image, we was performed to extract the edge by convolution Laplacian mask and input image, and we implemented the annotation-based and content-based image retrieval system for searching fast, efficient image by generation image database from extracting feature information of edge and metadata. We can improve the performance of the image contents retrieval, because the annotation-based and content-based image retrieval system is using image index which is made up of the content-based edge feature extract information represented in the low level of image and annotation-based edge feature information represented in the high level of image. As a conclusion, image retrieval system proposed in this paper is possible the accurate management of the accumulated information for the image contents and the information sharing and reuse of image because the proposed method do construct the image database by metadata.

  • PDF

Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition (특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구)

  • Kim, Do-Hui;Jung, YoungJin
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

Cloud-based Satellite Image Processing Service by Open Source Stack: A KARI Case

  • Lee, Kiwon;Kang, Sanggoo;Kim, Kwangseob;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.339-350
    • /
    • 2017
  • In recent, cloud computing paradigm and open source as a huge trend in the Information Communication Technology (ICT) are widely applied, being closely interrelated to each other in the various applications. The integrated services by both technologies is generally regarded as one of a prospective web-based business models impacting the concerned industries. In spite of progressing those technologies, there are a few application cases in the geo-based application domains. The purpose of this study is to develop a cloud-based service system for satellite image processing based on the pure and full open source. On the OpenStack, cloud computing open source, virtual servers for system management by open source stack and image processing functionalities provided by OTB have been built or constructed. In this stage, practical image processing functions for KOMPSAT within this service system are thresholding segmentation, pan-sharpening with multi-resolution image sets, change detection with paired image sets. This is the first case in which a government-supporting space science institution provides cloud-based services for satellite image processing functionalities based on pure open source stack. It is expected that this implemented system can expand with further image processing algorithms using public and open data sets.

Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

  • Jung-Hee, Seo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-based image retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device.

Reliable Image-Text Fusion CAPTCHA to Improve User-Friendliness and Efficiency (사용자 편의성과 효율성을 증진하기 위한 신뢰도 높은 이미지-텍스트 융합 CAPTCHA)

  • Moon, Kwang-Ho;Kim, Yoo-Sung
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.27-36
    • /
    • 2010
  • In Web registration pages and online polling applications, CAPTCHA(Completely Automated Public Turing Test To Tell Computers and Human Apart) is used for distinguishing human users from automated programs. Text-based CAPTCHAs have been widely used in many popular Web sites in which distorted text is used. However, because the advanced optical character recognition techniques can recognize the distorted texts, the reliability becomes low. Image-based CAPTCHAs have been proposed to improve the reliability of the text-based CAPTCHAs. However, these systems also are known as having some drawbacks. First, some image-based CAPTCHA systems with small number of image files in their image dictionary is not so reliable since attacker can recognize images by repeated executions of machine learning programs. Second, users may feel uncomfortable since they have to try CAPTCHA tests repeatedly when they fail to input a correct keyword. Third, some image-base CAPTCHAs require high communication cost since they should send several image files for one CAPTCHA. To solve these problems of image-based CAPTCHA, this paper proposes a new CAPTCHA based on both image and text. In this system, an image and keywords are integrated into one CAPTCHA image to give user a hint for the answer keyword. The proposed CAPTCHA can help users to input easily the answer keyword with the hint in the fused image. Also, the proposed system can reduce the communication costs since it uses only a fused image file for one CAPTCHA. To improve the reliability of the image-text fusion CAPTCHA, we also propose a dynamic building method of large image dictionary from gathering huge amount of images from theinternet with filtering phase for preserving the correctness of CAPTCHA images. In this paper, we proved that the proposed image-text fusion CAPTCHA provides users more convenience and high reliability than the image-based CAPTCHA through experiments.

Text-based Image Indexing and Retrieval using Formal Concept Analysis

  • Ahmad, Imran Shafiq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.3
    • /
    • pp.150-170
    • /
    • 2008
  • In recent years, main focus of research on image retrieval techniques is on content-based image retrieval. Text-based image retrieval schemes, on the other hand, provide semantic support and efficient retrieval of matching images. In this paper, based on Formal Concept Analysis (FCA), we propose a new image indexing and retrieval technique. The proposed scheme uses keywords and textual annotations and provides semantic support with fast retrieval of images. Retrieval efficiency in this scheme is independent of the number of images in the database and depends only on the number of attributes. This scheme provides dynamic support for addition of new images in the database and can be adopted to find images with any number of matching attributes.

An Implementation of XML Database System for Semantic-Based E-Catalog Image Retrieval (의미기반 전자 카탈로그 이미지 검색을 위한 XML 데이타베이스 시스템 구현)

  • Hong Sungyong;Nah Yunmook
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1219-1232
    • /
    • 2004
  • Recently, the web sites, such as e-business sites and shopping mall sites, deal with lots of catalog image information and contents. As a result, it is required to support semantic-based image retrieval efficiently on such image data. This paper presents a semantic-based image retrieval system, which adopts XML and Fuzzy technology. To support semantic-based retrieval on product catalog images containing multiple objects, we use a multi-level metadata structure which represents the product information and semantics of image data. To enable semantic-based retrieval on such image data, we design a XML database for storing the proposed metadata and study how to apply fuzzy data. This paper proposes a system, generate the fuzzy data automatically to use the image metadata, that can support semantic-based image retrieval by utilizing the generating fuzzy data. Therefore, it will contribute in improving the retrieval correctness and the user's satisfaction on semantic-based e-catalog image retrieval.

  • PDF

Using Context Information to Improve Retrieval Accuracy in Content-Based Image Retrieval Systems

  • Hejazi, Mahmoud R.;Woo, Woon-Tack;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.926-930
    • /
    • 2006
  • Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.

  • PDF

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

Design of Unsharp Mask Filter based on Retinex Theory for Image Enhancement

  • Kim, Ju-young;Kim, Jin-heon
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.65-73
    • /
    • 2017
  • This paper proposes a method to improve the image quality by designing Unsharp Mask Filter (UMF) based on Retinex theory which controls the frequency pass characteristics adaptively. Conventional unsharp masking technique uses blurring image to emphasize sharpness of image. Unsharp Masking(UM) adjusts the original image and sigma to obtain a high frequency component to be emphasized by the difference between the blurred image and the high frequency component to the original image, thereby improving the contrast ratio of the image. In this paper, we design a Unsharp Mask Filter(UMF) that can process the contrast ratio improvement method of Unsharp Masking(UM) technique with one filtering. We adaptively process the contrast ratio improvement using Unsharp Mask Filter(UMF). We propose a method based on Retinex theory for adaptive processing. For adaptive filtering, we control the weights of Unsharp Mask Filter(UMF) based on the human visual system and output more effective results.