• Title/Summary/Keyword: image segmentation technique

Search Result 344, Processing Time 0.031 seconds

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Quantitative Evaluation of Fiber Dispersion of the Fiber-Reinforced Cement Composites Using an Image Processing Technique (이미지 프로세싱 기법을 이용한 섬유복합재료의 정량적인 섬유분산성 평가)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jeong-Su;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.148-156
    • /
    • 2007
  • The fiber dispersion in fiber-reinferced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion in the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, a new evaluation method is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a charged couple device (CCD) camera through a microscope, the fiber dispersion is evaluated using an image processing technique and statistical tools. In this image processing technique, the fibers are more accurately detected by employing an enhanced algorithm developed based on a discriminant method and watershed segmentation. The influence of fiber orientation on the fiber dispersion evaluation was also investigated via shape analyses of fiber images.

Face and Iris Detection Algorithm based on SURF and circular Hough Transform (서프 및 하프변환 기반 운전자 동공 검출기법)

  • Artem, Lenskiy;Lee, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.175-182
    • /
    • 2010
  • The paper presents a novel algorithm for face and iris detection with the application for driver iris monitoring. The proposed algorithm consists of the following major steps: Skin-color segmentation, facial features segmentation, and iris positioning. For the skin-segmentation we applied a multi-layer perceptron to approximate the statistical probability of certain skin-colors, and filter out those with low probabilities. The next step segments the face region into the following categories: eye, mouth, eye brow, and remaining facial regions. For this purpose we propose a novel segmentation technique based on estimation of facial class probability density functions (PDF). Each facial class PDF is estimated on the basis of salient features extracted from a corresponding facial image region. Then pixels are classified according to the highest probability selected from four estimated PDFs. The final step applies the circular Hough transform to the detected eye regions to extract the position and radius of the iris. We tested our system on two data sets. The first one is obtained from the Web and contains faces under different illuminations. The second dataset was collected by us. It contains images obtained from video sequences recorded by a CCD camera while a driver was driving a car. The experimental results are presented, showing high detection rates.

Automatic Segmentation of the meniscus based on Active Shape Model in MR Images through Interpolated Shape Information (MR 영상에서 중간형상정보 생성을 통한 활성형상모델 기반 반월상 연골 자동 분할)

  • Kim, Min-Jung;Yoo, Ji-Hyun;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1096-1100
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the meniscus based on active shape model using interpolated shape information in MR images. First, the statistical shape model of meniscus is constructed to reflect the shape variation in the training set. Second, the generation technique of interpolated shape information by using the weight according to shape similarity is proposed to robustly segment the meniscus with large variation. Finally, the automatic meniscus segmentation is performed through the active shape model fitting. For the evaluation of our method, we performed the visual inspection, accuracy measure and processing time. For accuracy evaluation, the average distance difference between automatic segmentation and semi-automatic segmentation are calculated and visualized by color-coded mapping. Experimental results show that the average distance difference was $0.54{\pm}0.16mm$ in medial meniscus and $0.73{\pm}0.39mm$ in lateral meniscus. The total processing time was 4.87 seconds on average.

Stable Model for Active Contour based Region Tracking using Level Set PDE

  • Lee, Suk-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, we propose a stable active contour based tracking method which utilizes the bimodal segmentation technique to obtain a background color diminished image frame. The proposed method overcomes the drawback of the Mansouri model which is liable to fall into a local minimum state when colors appear in the background that are similar to the target colors. The Mansouri model has been a foundation for active contour based tracking methods, since it is derived from a probability based interpretation. By stabilizing the model with the proposed speed function, the proposed model opens the way to extend probability based active contour tracking for practical applications.

Surface Segmentation and Feature Description using the Signature Technique (Signature 기법을 이용한 면의 특징 표현 및 분할 기법)

  • 이보형;한헌수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.90-97
    • /
    • 1997
  • This paper presents a new algorithm for surface segmentation and feature description. The algorithm extracts the signature of an edge image based on the signature technqique[12] in the first stage. If there exists a range in the angle axis where more than two signatures form a closed curve, we can conclude there is a surface inside the range. Using this feature of the signature, surfaces can be segmented. The surface features such as number of vertices, number of edges, and type of surfaces can also be extracted by finding the signatures of individual surfaces. This algorithm has distinguished advantages: it can easily recover the lost part occuring in the edge iage using the curve fitting method and it can extract surface features even when surfaces are rotated in 3-D space.

  • PDF

3D Building Reconstruction Using a New Perceptual Grouping Technique

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract the useful building location information from the generated disparity map to obtain the segmentation of interested objects and thus reduce significantly unnecessary line segment extracted in low level feature extraction step. Hypothesis selection is carried out by using undirected graph in which close cycles represent complete rooftops hypotheses, and hypothesis are finally tested to contruct building model. We test the proposed method with synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the buildings can be efficiently used for the task of building detection and reconstruction from aerial images.

  • PDF

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.