• Title/Summary/Keyword: image of scientists

Search Result 1,102, Processing Time 0.021 seconds

Elliptical Clustering with Incremental Growth and its Application to Skin Color Region Segmentation (점증적으로 증가하는 타원형 군집화 : 피부색 영역 검출에의 적용)

  • Lee Kyoung-Mi
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1161-1170
    • /
    • 2004
  • This paper proposes to segment skin color areas using a clustering algorithm. Most of previously proposed clustering algorithms have some difficulties, since they generally detect hyperspherical clusters, run in a batch mode, and predefine a number of clusters. In this paper, we use a well-known elliptical clustering algorithm, an EM algorithm, and modify it to learn on-line and find automatically the number of clusters, called to an EAM algorithm. The effectiveness of the EAM algorithm is demonstrated on a task of skin color region segmentation. Experimental results present the EAM algorithm automatically finds a right number of clusters in a given image without any information on the number. Comparing with the EM algorithm, we achieved better segmentation results with the EAM algorithm. Successful results were achieved to detect and segment skin color regions using a conditional probability on a region. Also, we applied to classify images with persons and got good classification results.

Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot (서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.100-109
    • /
    • 2007
  • Object recognition of service robots is very important for most of services such as delivery, and errand. Conventional methods are based on the geometric models in static industrial environments, but they have limitations in indoor environments where the condition is changable and the movement of service robots occur because the interesting object can be occluded or small in the image according to their location. For solving these uncertain situations, in this paper, we propose the method that exploits observed objects as context information for predicting interesting one. For this, we propose the method for modeling domain knowledge in probabilistic frame by adopting Bayesian networks and ontology together, and creating knowledge model dynamically to extend reasoning models. We verify the performance of our method through the experiments and show the merit of inductive reasoning in the probabilistic model

Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm (데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합)

  • Yim, Ye-Ny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.

Development of Fashion Design Recommender System using Textile based Collaborative Filtering Personalization Technique (Textile 기반의 협력적 필터링 개인화 기술을 이용한 패션 디자인 추천 시스템 개발)

  • 정경용;나영주;이정현
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.541-550
    • /
    • 2003
  • It is important for the strategy of product sales to investigate the consumer's sensitivity and preference degree in the environment that the process of material development has been changed focusing on the consumer renter. In the present study, we propose the Fashion Design Recommender System (FDRS) of textile design applying collaborative filtering personalization technique as one of methods in the material development centered on consumer's sensibility and preferences. In collaborative filtering personalization technique based on textile, Pearson Correlation Coefficient is used to calculate similarity weights between users. We build the database founded on the sensibility adjective to develop textile designs by extracting the representative sensibility adjective from users' sensibility and preferences about textile designs. FDRS recommends textile designs to a consumer who has a similar propensity about textile. Ultimately, this paper sugeests empirical applications to verify the adequacy and the validity on this system with the development of Fashion Design Recommender System (FDRS)

Development of Advanced Rendering Library for CAD/CAM Moduler (CAD/CAM 모델러용 고급 렌더링 라이브러리의 개발)

  • Choe, Hun-Gyu;Lee, Tae-Hyeon;Han, Hun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.4
    • /
    • pp.385-394
    • /
    • 1999
  • 제품을 설계하는 디자이너나 엔지니어는 많은 시간과 노력을 들이지 않고서 그들이 설계한 3차원 제품 모델에 대한 사실적인 이미지를 원한다. 디자인 프로세스의 초기인 개념 설계에서부터 설계검증, 그리고 가공 과정에서 사실적인 이미지가 매우 유용하므로, 대부분의 주요 CAD 제작사는 그들의 CAD 소프트웨어에 고급 렌더링 기능을 추가하고 있다. 상용의 CAD/CAM 모델러에서는 NURB 곡면을 기초로 모델링을 수행하므로, NURB 곡면을 렌더링할 수 있는 패키지가 필요하다. VIF(Visual InterFace) 렌더링 라이브러리는 A-buffer 방식과 Ray tracing 방식의 두 가지 고급 렌더링 모드를 제공한다. 다각형은 물론 NURB 곡면을 입력으로 받아 사용자가 설정한 표면의 각종 계수, 원하는 view와 설정된 광원에 따라 이미지를 만들고 다양한 형태로 출력시킬 수 있는 다양한 기능을 제공한다. 본 논문에서는 VIF 렌더링 라이브러리에 대한 구조와 기능별로 분류된 함수에 대하여 설명하며, 실제로 CAD/CAM 시스템과 통합되어 구상설계에서부터 3차원 설계 모델링에 이르기까지의 제조공정에서 설계검증 툴로써 어떻게 활용되고 있는가에 대하여 기술한다.Abstract Engineers and industrial designers want to produce a realistic-looking images of a 3D model without spending a lot of time and money. Photo-realistic images are so useful from the conceptual design, through its verification, to the machining, that most major CAD venders offer built-in as well as add-on photo-realistic rendering capability to their core CAD software. Since 3D model is consists of a set of NURB surfaces in commercial CAD packages, we need a renderer which handles NURB surface as well as other primitives.A new rendering library called VIF (Visual InterFace) provides two photo-realistic rendering modes: A-buffer and Ray tracing. As an input data it takes NURB surfaces as well as polygonal data and produces images in accordance with the surface parameters, view and lights set by user and outputs image with different formats. This paper describes the overall architecture of VIF and its library functions classified by their functionalities, and discusses how VIF is used as a graphical verification tool in manufacturing processes from the conceptual design to 3D modeling.

3D Face Recognition using Cumulative Histogram of Surface Curvature (표면곡률의 누적히스토그램을 이용한 3차원 얼굴인식)

  • 이영학;배기억;이태흥
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.605-616
    • /
    • 2004
  • A new practical implementation of a facial verification system using cumulative histogram of surface curvatures for the local and contour line areas is proposed, in this paper. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face images, one has to take into consideration the orientated frontal posture to normalize after extracting face area from the original image. The feature vectors are extracted by using the cumulative histogram which is calculated from the curvature of surface for the contour line areas: 20, 30 and 40, and nose, mouth and eyes regions, which has depth and surface characteristic information. The L1 measure for comparing two feature vectors were used, because it was simple and robust. In the experimental results, the maximum curvature achieved recognition rate of 96% among the proposed methods.

Parallel Algorithm for Optimal Stack Filters on MCC and CCC (MCC 및 CCC에서의 최적 스택 필터를 위한 병렬 알고리즘)

  • Jeon, Byeong-Mun;Jeong, Chang-Seong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.10
    • /
    • pp.1185-1193
    • /
    • 1999
  • 최적 스택 필터는 시그널 또는 영상의 임의의 특성 정보를 보존하고자 하는 요구조건에 의해 강제된 구조적 제약 하에서 최대의 잡음제거 효과를 얻을 수 있다. 그리고 임계치 분할 특성과 양의 부울 함수에 기반한 이진 영역에서의 처리 특성은 이 필터가 높은 병렬성을 갖고 있음을 보여준다. 본 논문에서는 두 개의 병렬 계산 모델 MCC(Mesh-Connected Computer)와 CCC(Cube-Connected Computer)에서 최적 스택 필터를 위한 1차원 병렬 알고리즘을 개발한다. 최적 스택 필터의 실행 시간은 주로 이진 median 연산에 의해 결정되고 본 논문에서 제안된 알고리즘은 선형 분리성에 의해 이 연산을 구현한다. 이를 바탕으로, M 레벨의 1-D 시그널의 길이가 L이고 윈도우 폭이 N이라고 가정할 때, 제안된 알고리즘은 {{{{root M times root M`` MCC에서 O(L sqrt{M}`) 시간에 그리고 M 개의 PE를 갖는 CCC에서 O(L log M)시간에 수행될 수 있다. 또한 잡음을 더욱 효과적으로 제거하기 위해 윈도우 폭 N을 증가시킬 때, 제안된 병렬 알고리즘의 계산 시간은 일정하게 유지됨을 보인다.Abstract An optimal stack filter achieves the maximum noise attenuation under the structural constraints imposed by the requirement of preserving certain signal or image features. And the filter provides a high parallelism due to the principles of threshold decomposition and binary processing based on positive Boolean functions(PBFs). In this paper, we develop an one-dimensional parallel algorithm for the optimal stack filter on two parallel computation models, MCC(Mesh-Connected Computer) and CCC(Cube-Connected Computer). The running time of the optimal stack filter depends mainly on the binary median operation and our algorithm realizes this operation by the linear separability. Based on this scheme, our parallel algorithm can be performed in {{{{O(L sqrt{M}`) MCC and inO(L log M) time on CCC with M PEs, when the length of M``-valued 1-D signal is L`` and window width is N`` Also, we show that the computation time of our parallel algorithm keeps constant when the window width N increases in order to achieve the best noise attenuation.

Automatic Registration Method for Multiple 3D Range Data Sets (다중 3차원 거리정보 데이타의 자동 정합 방법)

  • 김상훈;조청운;홍현기
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1239-1246
    • /
    • 2003
  • Registration is the process aligning the range data sets from different views in a common coordinate system. In order to achieve a complete 3D model, we need to refine the data sets after coarse registration. One of the most popular refinery techniques is the iterative closest point (ICP) algorithm, which starts with pre-estimated overlapping regions. This paper presents an improved ICP algorithm that can automatically register multiple 3D data sets from unknown viewpoints. The sensor projection that represents the mapping of the 3D data into its associated range image is used to determine the overlapping region of two range data sets. By combining ICP algorithm with the sensor projection constraint, we can make an automatic registration of multiple 3D sets without pre-procedures that are prone to errors and any mechanical positioning device or manual assistance. The experimental results showed better performance of the proposed method on a couple of 3D data sets than previous methods.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Word Segmentation in Handwritten Korean Text Lines based on GAP Clustering (GAP 군집화에 기반한 필기 한글 단어 분리)

  • Jeong, Seon-Hwa;Kim, Soo-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.660-667
    • /
    • 2000
  • In this paper, a word segmentation method for handwritten Korean text line images is proposed. The method uses gap information to segment words in line images, where the gap is defined as a white run obtained after vertical projection of line images. Each gap is assigned to one of inter-word gap and inter-character gap based on gap distance. We take up three distance measures which have been proposed for the word segmentation of handwritten English text line images. Then we test three clustering techniques to detect the best combination of gap metrics and classification techniques for Korean text line images. The experiment has been done with 305 text line images extracted manually from live mail pieces. The experimental result demonstrates the superiority of BB(Bounding Box) distance measure and sequential clustering approach, in which the cumulative word segmentation accuracy up to the third hypothesis is 88.52%. Given a line image, the processing time is about 0.05 second.

  • PDF