• Title/Summary/Keyword: image of science

Search Result 9,919, Processing Time 0.036 seconds

Preliminary Study (1) for Development of Computed Radiography (CR) Image Analysis according to X-ray Non-destructive Test by Wood Species (Computed Radiograhpy (CR)를 통한 목재 수종별 X선 투과 이미지 해석을 위한 기초연구 (1))

  • Song, Jung Il;Kim, Han Seul
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.220-231
    • /
    • 2021
  • The use of digital copies of film-based analog images and the introduction of digital radiographic imaging systems using image plates gradually replace the non-destructive radiationirradiation method of Cultural Heritage. The quality of images obtained from this technique is affected by conditions such as tube voltage, tube current, and exposure time, type of image acquisition medium, distance of the artifacts from the image acquisition medium, and thickness of artifacts. In this study, we evaluated the grayscale image obtained using GE's Computed Radiograhpy (CR) imaging system, the transmission characteristics of the X-ray source for each tree type (pine, chestnut, sawtooth oak, ginkgo) used in wooden Cultural Heritage, and the signal-to-noise ratio (SNR) and contrast. The GE's CR imaging were analyzed using the Duplex wire image quality indicator, line-pair gauges.

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

Efficient Generation of Image Identifiers for Image Database (정지영상 데이터베이스의 효율적 인식자 생성)

  • Park, Je-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.89-94
    • /
    • 2011
  • The image identification methodology associates an image with a unique identifiable representation. Whenever the methodology regenerates an identifier for the same image, moreover, the newly created identifier needs to be consistent in terms of representation value. In this paper, we discuss a methodology for image identifier generation utilizing luminance correlation. We furthermore propose a method for performance enhancement of the image identifier generation. We also demonstrate the experimental evaluations for uniqueness and similarity analysis and performance improvement that have shown favorable results.

Association between Subjective Body Image and Suicide Ideation: Based on 14th Korean Youth Health Behavior Survey (제14기(2018년) 청소년건강행태조사 자료를 이용한 청소년 주관적 체형 인지와 자살 생각 사이의 연관성)

  • Ryu, Hanjun;Kim, Youngho;Kim, Jaehyun
    • Health Policy and Management
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • Background: This study aimed to demonstrate the importance to recognize subjective body image on their mental health on adolescents. Methods: We used the chi-square test and the multiple logistic regression model to analyze the data of the "Korean Youth Health Behavior Survey in 2018" (n=42,259) conducted by the Korea Centers for Disease Control and Prevention. Results: As a result of the analysis, suicide ideation increased when the subject body image is thin and fat. Especially, the suicide ideation who recognized the subjective body image as thin is higher (odds ratio [OR], 1.666; 95% confidence interval [CI], 1.050-1.295), and who recognized the subjective body image as fat is higher (OR, 1.134; 95% CI, 1.032-1.245) than the group who recognized the subjective body image as normal. Conclusion: When preparing a health policy on adolescent suicide issues, we need to consider the association between subjective body image and suicide ideation.

Off-Site Distortion and Color Compensation of Underwater Archaeological Images Photographed in the Very Turbid Yellow Sea

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • Underwater photographing and image recording are essential for pre-excavation survey and during excavation in underwater archaeology. Unlike photographing on land, all underwater images suffer various quality degradations such as shape distortions, color shift, blur, low contrast, high noise levels and so on. Outcome is very often heavily photographing equipment and photographer dependent. Excavation schedule, weather conditions, and water conditions can put burdens on divers. Usable images are very limited compared to the efforts. In underwater archaeological study in very turbid water such as in the Yellow Sea (between mainland China and the Korean peninsula), underwater photographing is very challenging. In this study, off-site image distortion and color compensation techniques using an image processing/analysis software is investigated as an alternative image quality enhancement method. As sample images, photographs taken during the excavation of 800-year-old Taean Mado Shipwrecks in the Yellow Sea in 2008-2010 were mainly used. Significant enhancement in distortion and color compensation of archived images were obtained by simple post image processing using image processing/analysis software (PicMan) customized for given view ports, lenses and cameras with and without optical axis offsets. Post image processing is found to be very effective in distortion and color compensation of both recent and archived images from various photographing equipment models and configurations. Merits and demerit of in-situ, distortion and color compensated photographing with sophisticated equipment and conventional photographing equipment, which requires post image processing, are compared.

A Study on Radiological Image Retrieval System (방사선 의료영상 검색 시스템에 관한 연구)

  • Park, Byung-Rae;Shin, Yong-Won
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • The purpose of this study was to design and implement a useful annotation-based Radiological image retrieval system to accurately determine on education and image information for Radiological technologists. For better retrieval performance based on large image databases, we presented an indexing technique that integrated $B^+-tree$ proposed by Bayer for indexing simple attributes and inverted file structure for text medical keywords acquired from additional description information about Radiological images. In our results, we implemented proposed retrieval system with Delphi under Windows XP environment. End users, Radiological technologists, are able to store simple attributes information such as doctor name, operator name, body parts, disease and so on, additional text-based description information, and Radiological image itself as well as to retrieve wanted results by using simple attributes and text keywords from large image databases by graphic user interface. Consequently proposed system can be used for effective clinical decision on Radiological image, reduction of education time by organizing the knowledge, and well organized education in the clinical fields. In addition, It can be expected to develop as decision support system by constructing web-based integrated imaging system included general image and special contrast image for the future.

  • PDF

Create a hybrid algorithm by combining Hill and Advanced Encryption Standard Algorithms to Enhance Efficiency of RGB Image Encryption

  • Rania A. Tabeidi;Hanaa F. Morse;Samia M. Masaad;Reem H. Al-shammari;Dalia M. Alsaffar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.129-134
    • /
    • 2023
  • The greatest challenge of this century is the protection of stored and transmitted data over the network. This paper provides a new hybrid algorithm designed based on combination algorithms, in the proposed algorithm combined with Hill and the Advanced Encryption Standard Algorithms, to increase the efficiency of color image encryption and increase the sensitivity of the key to protect the RGB image from Keyes attackers. The proposed algorithm has proven its efficiency in encryption of color images with high security and countering attacks. The strength and efficiency of combination the Hill Chipper and Advanced Encryption Standard Algorithms tested by statical analysis for RGB images histogram and correlation of RGB images before and after encryption using hill cipher and proposed algorithm and also analysis of the secret key and key space to protect the RGB image from Brute force attack. The result of combining Hill and Advanced Encryption Standard Algorithm achieved the ability to cope statistically

Utilization of Hyperspectral Image Analysis for Monitoring of Stone Cultural Heritages (석조문화재 모니터링을 위한 하이퍼스펙트럴 이미지분석의 활용)

  • Chun, Yu Gun;Lee, Myeong Seong;Kim, Yu Ri;Lee, Mi Hye;Choi, Myoung Ju;Choi, Ki Hyun
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.395-402
    • /
    • 2015
  • This study was considered utilization of hyperspectral image analysis for monitoring. Accordingly we applied to stone cultural properties to data correction methods, image classification techniques, NDVI computation techniques using hyperspectral image. As the results, hyperspectral image analysis was possible making detailed deterioration map, accurate calculation of deterioration rate, mapping of normalized difference vegetation index on the basis of reflectance of each materials. Therefore, hyperspectral image analysis will be used for effective monitoring techniques of stone cultural heritages.

The Evaluation of Denoising PET Image Using Self Supervised Noise2Void Learning Training: A Phantom Study (자기 지도 학습훈련 기반의 Noise2Void 네트워크를 이용한 PET 영상의 잡음 제거 평가: 팬텀 실험)

  • Yoon, Seokhwan;Park, Chanrok
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.655-661
    • /
    • 2021
  • Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.

Camera Identification of DIBR-based Stereoscopic Image using Sensor Pattern Noise (센서패턴잡음을 이용한 DIBR 기반 입체영상의 카메라 판별)

  • Lee, Jun-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.66-75
    • /
    • 2016
  • Stereoscopic image generated by depth image-based rendering(DIBR) for surveillance robot and camera is appropriate in a low bandwidth network. The image is very important data for the decision-making of a commander and thus its integrity has to be guaranteed. One of the methods used to detect manipulation is to check if the stereoscopic image is taken from the original camera. Sensor pattern noise(SPN) used widely for camera identification cannot be directly applied to a stereoscopic image due to the stereo warping in DIBR. To solve this problem, we find out a shifted object in the stereoscopic image and relocate the object to its orignal location in the center image. Then the similarity between SPNs extracted from the stereoscopic image and the original camera is measured only for the object area. Thus we can determine the source of the camera that was used.