• Title/Summary/Keyword: image measurement

Search Result 3,144, Processing Time 0.076 seconds

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정동적 변위 계측과 속도, 가속도 추산방식 연구)

  • Heo, Seok;Kwak, Moon-Kyu;Lee, Ho-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.527-532
    • /
    • 2010
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, ccd image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration measurement, velocity and acceleration directly without any contact. The current resolution of the displacement measurement is limited to 1/100 millimeter scale.

  • PDF

Measurement of Large-amplitude and Low-frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 큰 변위 저주파 진동 계측)

  • Kim, Ki-Young;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.329-333
    • /
    • 2005
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we propose the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The current resolution of the vibration measurement is limited to sub centimeter scale. However, the frequency bandwidth and resolution can be enhanced by a high-speed and high-resolution image processing system.

A System for Measuring 3D Human Bodies Using the Multiple 2D Images (다중 2D 영상을 이용한 3D 인체 계측 시스템)

  • 김창우;최창석;김효숙;강인애;전준현
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.5
    • /
    • pp.1-12
    • /
    • 2003
  • This paper proposes a system for measuring the 3D human bodies using the multiple 2D images. The system establishes the multiple image input circumstance from the digital camera for image measurement. The algorithm considering perspective projection leads us to estimate the 3D human bodies from the multiple 2D images such as frontal. side and rear views. The results of the image measurement is compared those of the direct measurement and the 3D scanner for the total 40 items (12 heights, 15 widths and 13 depths). Three persons measure the 40 items using the three measurement methods. In comparison of the results obtained among the measurement methods and the persons, the results between the image measurement and the 3D scanner are very similar. However, the errors for the direct measurement are relatively larger than those between the image measurement and the 3D scanner. For example, the maximum errors between the image measurement and the 3D scanner are 0.41cm in height, 0.39cm in width and 0.95cm in depth. The errors are acceptable in body measurement. Performance of the image measurement is superior to the direct. because the algorithm estimates the 3D positions using the perspective projection. In above comparison, the image measurement is expected as a new method for measuring the 3D body, since it has the various advantages of the direct measurement and 3D scanner in performance for measurement as well as in the devices, cost, Portability and man power.

Study on Improvement of Measurement Precision in Digital Image Correlation Measurement Method by Using Subpixel Algorithms (이미지 상관법의 서브 픽셀 알고리즘을 이용한 측정 분해능 향상에 관한 연구)

  • Kim, Seung Jong;Kang, Young Jun;Choi, In Young;Hong, Kyung Min;Ryu, Won Jea
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1039-1047
    • /
    • 2015
  • Contact type sensors (e.g., displacement sensor and strain gauge) were typically used to evaluate the safety and mechanical properties in machines and construction. However, those contact type sensors have been constrained because of measurement problems such as surface roughness, temperature, humidity, and shape. The Digital Image Correlation (DIC) measurement system is a vision measurement system. This measurement system uses the taken image using a CCD camera and calculates the image correlation between the reference image and the deformed image under external force to measure the displacement and strain rates. In this paper, we discuss methods to improve the measurement precision of the digital image correlation measurement system. A tensile test was conducted to compare the precision improvement effects, by using the universal test machine and the DIC measurement system, with the use of subpixel algorithms, i.e., the Coarse Fine Search (CFS) algorithm and the Peak Finding (PF) algorithm.

Improvement of the Accuracy and Conveniency in Automated Strain Measurement through High-Resolution Image Processing (고해상도 화상처리를 통한 자동 변형률 측정의 정확도와 편의성 개선)

  • Kim, H.J.;Choi, S.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.34-39
    • /
    • 2006
  • An automated surface-strain measurement system, named ASIAS, was developed by using the image processing and stereo vision techniques in the previous studies by the corresponding author and his coworkers. This system has been upgraded mainly to improve the accuracy through image enhancement, sub-pixel measurement, surface smoothing, etc., since the first version was released. The present study has still more improved the convenience of users as well as the accuracy of measurement by processing high resolution images 8 mega pixels or more which can be easily obtained from a portable digital steal camera. It is proved that high resolution image processing greatly decreases the measurement error and gives strain data without considerable deterioration of accuracy even when the deformed grids to be measured and the master grids for camera calibration are captured together in the same image, making the whole process of strain measurement much simpler.

  • PDF

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정적·동적 변위 계측과 속도·가속도 추산방식 연구)

  • Heo, Seok;Lee, Bum-Ho;Jang, Il-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2011
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, CCD(charge coupled device) image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration displacement, velocity and acceleration directly without any contact. The current resolution for the displacement measurement can be seen from the results.

Development of Image Quality Measurement Method of Coronary Angiography Using Image Analysis Program (영상 분석 프로그램을 이용한 관상동맥 혈관 조영상의 화질 측정 방법 고안)

  • Seo, Young-Hyun;Song, Jong-Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Research should be actively conducted for the ability of X-ray equipment and Retrospective image analysis of X-ray equipment used in hospitals. Retrospective image analysis of X-ray machines, CT and MRI of radiology and medical equipment has been actively conducted. However, image quality measurement using angiography equipment of angiography room is mostly measured with phantom, and image quality measurement on image after being taken by actual patient is insufficient and researches on accurate image quality measurement method are remarkable. It is in short supply. Therefore, through this study, the researcher devised a method to measure the image quality of the acquired image after coronary angiography, and to provide a high quality image to the operator. The equipment and programs used were angiographic examination equipment (Axiom Artis Zee Ceiling) and Image J program. Subjects were images automatically saved in PACS program after coronary angiography.For image quality measurement, selected the AP Caudal 30° image that show the LCA vessel well and the LAO 30° image that show the RCA vessel well during the coronary angiography. In order to measure the background and ROI of the selected image by selecting an image, a criterion on how to find and measure a section where the overlap of the shadow, such as blood vessel, liver and lung is minimized, is presented. In conclusion, there is no exact standard for analyzing an image quality measurement method of angiography image. Therefore, in order to provide quality images to the practistioners, not only the technicians of the equipment but also the users who actually use them should become researchers and conduct research on image quality measurement in various ways. Thus, it is expected to provide excellent images to patients.

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Measurement of Low-Frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 저주파수 진동 계측)

  • Kim, Ki-Young;Kwak, Moon- K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.503-507
    • /
    • 2004
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we discuss the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The resolution of the vibration measurement can be refined but limited to the sub centimeter displacement.

  • PDF

Development and Application of Measurement Tools for Physics Image Using the Semantic Differential Method (의미분석법에 의한 물리 이미지 측정도구 개발 및 적용)

  • Song, Youngwook;Choi, Hyukjoon
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.6
    • /
    • pp.1051-1061
    • /
    • 2017
  • An image is a comprehensive result that you have experienced about an object and means the image that you have on the surface of your consciousness. The image of the subject has an important influence on learning the subject. The image analysis of the subjects that the learners have will be good data to decide the direction of teaching and learning. The purpose of this study is to develop and apply measurement tools for physics image and discuss its educational implications. The research method is to develop the measurement tools for the physics image by semantic analysis method and apply it to the secondary pre-service physics teacher. The subjects of the study were 39 first graders, 31 second graders, 37 third graders, and 38 fourth graders at the University of Education, a total of 145 students, 82 of whom were male and 63 were female. The study results show that the image measurement tools for physics consisted of 25 items from five elements: 'interest,' 'feeling,' 'scope,' 'evaluation,' and 'viewpoint.' There were statistically significant differences between the male and female students in applying the measurement tools developed for the physics image of secondary pre-service physics teachers. Male students showed significantly higher statistical significance than female students in the 'interest' and 'feeling' elements of measurement tools for the physics image. In the 'scope' element of measurement tools for the physics image the second grade was statistically higher than the fourth grade. Finally, we discussed educational implications for image analysis of physics and the usefulness of using measurement tools in physics image.