Proceedings of the Korea Institute of Convergence Signal Processing
/
2005.11a
/
pp.221-224
/
2005
대부분의 영상은 다양한 이유(노이즈, 전송과정 중 발생하는 문제 등)로 인해 항상 좋은 품질을 보여주진 못한다. 이렇게 훼손된 영상의 복원은 다양한 정보를 제공한다. 이런 훼손된 영상을 복원하기 위해 Median filtering과 같은 기존의 처리 방법들은 주변 화소(Pixel)를 평활화(Smoothing) 처리를 하기 때문에 noise 처리에는 좋으나 원 영상의 중요한 에지 성분까지도 평활화 처리를 함으로써 에지 부분의 공간적 이동을 초래할 수 있다. 이러한 문제점을 해결하기 위하여 image inpainting 방법이 제안되고 있으며, inpainting 기법에는 편미분 방정식(PDE)을 이용한 방법, 텍스쳐 병합 기반의 방법들이 있다. 그러나 이러한 inpainting 기법들은 연산 수행시간이 많이 소요되는 단점이 있다. 따라서 본 연구에서는 image inpainting을 수행시 소요되는 연산시간을 줄이는 fast image inpainting 알고리즘을 제안한다.
The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.
Image inpainting is an image processing technique that restores an image by naturally filling the empty or damaged regions in an image. In this paper, we present a new image inpainting technique that can suppress the generation of texture garbage which is one of the artifacts of existing exemplar-based image inpainting. Unlike the existing technique, only the stationary source patch is sampled as the exemplar patch based on the assumption of spatial stationarity of the texture. This prevents the texture garbage, which is an inconsistent piece of texture from being copied to the target region. Experimental results show that the texture synthesis using the proposed method produces more natural inpainting results than the existing method.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.349-350
/
2009
In this paper, we describe an error concealment techniques based on image inpainting for the image impairments due to the packet loss. Image inpainting is to remove or restore the damaged sections from the images, which is usually old images, paintings, or video films. Inpainting has a long history which goes back to the era when the paintings come out. Manual inpainting is no more used, and we can use digital inpainting for the digitally impaired images and video sequences. In this paper, we review the error concealment techniques for the packet loss recovery and propose our inpainting based image impairment recovery scheme for video communication over packet networks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.3
/
pp.877-893
/
2022
With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.
We propose a partial occlusion removal method for computational integral imaging reconstruction (CIIR) based on the usage of the exemplar based inpainting technique. The proposed method is an improved version of the original linear inpainting based CIIR (LI-CIIR), which uses the inpainting technique to fill in the data missing region. The LI-CIIR shows good results for images which contain objects with smooth surfaces. However, if the object has a textured surface, the result of the LI-CIIR deteriorates, since the linear inpainting cannot recover the textured data in the data missing region well. In this work, we utilize the exemplar based inpainting to fill in the textured data in the data missing region. We call the proposed method the neighboring elemental image exemplar based inpainting (NEI-exemplar inpainting) method, since it uses sources from neighboring elemental images to fill in the data missing region. Furthermore, we also propose an automatic occluding region extraction method based on the use of the mutual constraint using depth estimation (MC-DE) and the level set based bimodal segmentation. Experimental results show the validity of the proposed system.
Park, Chan-Woo;Lee, San-Hyun;Park, Ki-Tae;Moon, Young-Shik
Journal of the Institute of Electronics Engineers of Korea CI
/
v.48
no.1
/
pp.8-16
/
2011
Image inpainting is a technique for removing damaged regions and reconstructing them with visually plausible backgrounds. However, if size of the damaged regions for reconstructing is large, the unexpected results can be obtained due to disconnected structures within reconstructed regions. In this paper, by considering spatial distance information between candidate patches and a damaged patch as well as pixel value difference, an exemplar-based image inpainting using multiple patches is proposed. In conventional exemplar-based image inpainting method, implausible results such as blocking effects or repetition of reconstructed patch may occur by using inappropriately selected single patch. To improve the exemplar-based method, the weighted sum of multiple patches considering both the spatial distance and the pixel value difference between the target patch and the candidate patches is utilized. Experimental results have shown that the proposed method produces better performance of image inpainting than the existing method.
Sparse view CT has been widely used to reduce radiation dose to patient in radiation therapy. In this work, we performed sinogram restoration from sparse sampling data by using inpainting method for simulation and experiment. Sinogram restoration was performed in accordance with sampling angle and restoration method, and their results were validated with root mean square error (RMSE) and image profiles. Simulation and experiment are designed to fan beam scan for various projection angles. Sparse data in sinogram were restored by using linear interpolation and inpainting method. Then, the restored sinogram was reconstructed with filtered backprojection (FBP) algorithm. The results showed that RMSE and image profiles were depended on the projection angles and restoration method. Based on the simulation and experiment, we found that inpainting method could be improved for sinogram restoration in comparison to linear interpolation method for estimating RMSE and image profiles.
Image restoration has been carried out by texture synthesis mostly for large regions and inpainting algorithms for small cracks in images. In this paper, we propose a new approach that allows for the simultaneous fill-in of different structures and textures by processing in a wavelet domain. A combination of structure inpainting and patch-based texture synthesis is carried out, which is known as patch-based inpainting, for filling and updating the target region. The wavelet transform is used for its very good multiresolution capabilities. The proposed algorithm uses the wavelet domain subbands to resolve the structure and texture components in smooth approximation and high frequency structural details. The subbands are processed separately by the prioritized patch-based inpainting with isophote energy driven texture synthesis at the core. The algorithm automatically estimates the wavelet coefficients of the target regions of various subbands using optimized patches from the surrounding DWT coefficients. The suggested performance improvement drastically improves execution speed over the existing algorithm. The proposed patch optimization strategy improves the quality of the fill. The fill-in is done with higher priority to structures and isophotes arriving at target boundaries. The effectiveness of the algorithm is demonstrated with natural and textured images with varying textural complexions.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.12
/
pp.5170-5188
/
2015
This paper proposes a novel progressive secret image-hiding scheme based on the inpainting technique, the vector quantization technique (VQ) and the exploiting modification direction (EMD) technique. The proposed scheme first divides the secret image into non-overlapping blocks and categorizes the blocks into two groups: complex and smooth. The blocks in the complex group are compressed by VQ with PCA sorted codebook to obtain the VQ index table. Instead of embedding the original secret image, the proposed method progressively embeds the VQ index table into the cover images by using the EMD technique. After the receiver recovers the complex parts of the secret image by decoding the VQ index table from the shadow images, the smooth parts can be reconstructed by using the inpainting technique based on the content of the complex parts. The experimental results demonstrate that the proposed scheme not only has the advantage of progressive data hiding, which involves more shadow images joining to recover the secret image so as to produce a higher quality steganography image, but also can achieve high hiding capacity with acceptable recovered image quality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.