• 제목/요약/키워드: image histogram

검색결과 1,258건 처리시간 0.029초

가상 놀이 공간 인터페이스를 위한 HMM 기반 상반신 제스처 인식 (HMM-based Upper-body Gesture Recognition for Virtual Playing Ground Interface)

  • 박재완;오치민;이칠우
    • 한국콘텐츠학회논문지
    • /
    • 제10권8호
    • /
    • pp.11-17
    • /
    • 2010
  • 본 논문은 HMM기반의 상반신 제스처 인식에 대하여 연구하였다. 공간상의 제스처를 인식하기 위해서는 일단 제스처를 구성하고 있는 포즈에 대한 구분이 우선되어야 한다. 인터페이스에 사용되는 포즈를 구분하기 위해서 정면과 옆면에 설치한 적외선 카메라 두 대를 실험에 사용하였다. 그리고 각각의 적외선 카메라에서 하나의 포즈에 대한 정면 포즈와 옆면 포즈로 나눠서 획득한다. 획득한 적외선 포즈 영상은 SVM의 비선형 RBF 커널 함수를 이용하여 구분하였다. RBF 커널을 사용하면 비선형적 분류 포즈들간의 오분류 현상을 구분할 수 있다. 이렇게 구분된 포즈들의 연속은 HMM의 상태천이행렬을 이용하여 제스처로 인식된다. 인식된 제스처는 OS Value에 매핑하여 기존의 Application에 적용할 수 있다.

패치 CEGI를 이용한 메쉬 워터마킹 (A Mesh Watermarking Using Patch CEGI)

  • 이석환;권기룡
    • 전자공학회논문지CI
    • /
    • 제42권1호
    • /
    • pp.67-78
    • /
    • 2005
  • 본 논문에서는 복소 가우시안 영상 (Complex Extended Gaussian Image, CEGI)을 이용한 3D 메쉬 모델의 블라인드 워터마킹을 제안하였다. CEGI는 메쉬의 법선 벡터 분포를 나타내는 3차원 방향 히스토그램으로, 이는 메쉬의 면적 및 임의의 기준점에 대한 거리로 표현되는 복소 가중치의 합으로 구현된다. 제안한 방법에서는 먼저 3D 메쉬 모델을 모델의 형상에 따라 여러개의 패치로 분할한다. 그리고 워터마크를 삽입하기 위하여 각 패치별로 CEGI를 구한 후에 복소 가중치의 크기가 큰 셀을 선택하여, 각 패치 CEGI 상에 통일한 순위의 셀들에 각각 삽입한다. 그리고 패치의 중점 좌표 및 셀 순위표를 이용하여 원 메쉬 모델없이 워터마크를 추출한다. 이 때, 회전과 같은 아핀 변환된 모델에서는 오일러 각을 이용한 재배열 과정을 수행한다. 실험 결과에서 제안한 방법이 절단, 아핀 변환, 및 랜덤 잡음 첨가등의 기하학적 공격 및 메쉬 간단화 등의 위상학적 공격에 견고하였으며 또한 워터마크의 비가시성을 확인하였다.

안개 제거에 의한 객체 검출 성능 향상 방법 (A Framework for Object Detection by Haze Removal)

  • 김상균;최경호;박순영
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.168-176
    • /
    • 2014
  • 영상 시퀀스로부터 움직이는 객체의 검출은 비디오 감시, 교통 모니터링 및 분석, 사람 검출 및 추적 등에서 가장 기본적이며 중요한 분야이다. 안개와 같은 환경적 요인에 의하여 화질이 저하된 영상 속에서 움직이는 객체를 검출하는 일은 매우 어렵다. 특히, 안개는 주변 물체의 색상을 모두 비슷하게 만들고 채도를 떨어뜨려 배경으로부터 객체를 구별하기 힘들게 만든다. 이런 이유로 안개 영상 속에서 객체 검출 성능은 매우 낮으며 신뢰할 수 없는 결과를 나타내고 있다. 본 논문은 안개와 같은 환경적 요인을 제거하고 객체의 검출 성능을 높이기 위한 방법으로 안개 지수를 기반으로 안개 유무를 판단하고, Dark Channel Prior을 이용하여 안개 영상의 전달량을 추정하고 안개가 제거된 영상으로 복원하였으며 가우시안 혼합 모델을 이용한 배경 차분 방법을 이용하여 객체를 검출하였다. 그리고 제안된 방법의 성능을 비교하기 위해 안개 제거 전과 후의 영상에 대한 Recall 과 Precision을 측정하여 안개 제거에 따른 성능 향상 정도를 수치화하여 비교하였다. 결과적으로 안개 제거 후 영상의 가시성이 매우 향상되었으며 객체 검출 성능이 매우 향상됨을 알 수 있었다.

클래스 내 표준편차 기반의 문턱치 처리에 의한 영상분할 (Image Thresholding Based on Within-Class Standard Deviation)

  • 성정민;하호건;최봉열
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.216-224
    • /
    • 2013
  • 영상분할에 사용되는 문턱치 처리 방법들 중 Otsu 방법은 클래스 내 분산(within-class variance)을 이용하여 최적의 문턱치를 자동으로 추정한다. 이때, Otsu 방법은 각 클래스(class)의 통계적 분포를 표현함에 있어 분산을 사용하며, 이러한 분산은 평균으로부터 해당 자료까지의 거리 제곱으로 표현된다. 그 결과, Otsu 방법의 최적 문턱치는 분산의 크기에 큰 영향을 받으며, 분산들 중 크기가 큰 쪽으로 편향되는 문제점을 보인다. 이에 본 논문은 분산을 표준편차로 변경함으로써 이러한 현상을 감소시켰으며, 보다 정확한 문턱치를 추정할 수 있었다. 본 논문은 기존의 클래스 분산(class variance)을 클래스 표준편차(class standard deviation)로 대체하였으며, 문턱치 선택 기준으로서 클래스 내 표준편차(within-class standard deviation)을 제안하였다. 타당성을 검증하기 위해 두 개의 정규분포 히스토그램(histogram) 및 음영이 있는 영상들에 대해 모의실험을 수행하였으며, 제안된 방법을 Otsu 방법 및 기존의 방법들과 비교하였다. 또한, 객관적 성능평가(Misclassification Error)를 통해 제안된 방법의 우수성을 확인하였다.

문서 영상 내의 테이블 벡터화 연구 (Research on the Table Vacuolization in the Document Image)

  • 김우성;심진보;박용범;문경애;지수영
    • 한국정보처리학회논문지
    • /
    • 제3권5호
    • /
    • pp.1147-1159
    • /
    • 1996
  • 본 논문에서는 문서인식 시스템에서 정확한 문서 인식의 기본이 되고 인식 결과에 중요한 영향을 미치는 전처리 알고리즘 중 테이블 입력의 효율적인 처리 방법을 연구 한다. 테이블 내의 문자를 인식하기 위해서는 테두리선과 문자 부분을 먼저 분리하는 작업이 필요하다. 왜냐하면, 테이블을 인식하기 위해서는 테두리선에 의해 블록화된 테두리선 안의 문자를 인식해야 하며 또한 테두리선을 효율적으로 벡터화하는 방법이 필요하다. 테이블을 벡터화하는 방법으로 8방향 체인 코드를 이용하여 테이블 선 성분을 추출하는 방법과 히스토그램을 이용하여 테이블의 수행, 수직 성분을 추출 하여 얻어진 교차점을 이용하여 대각선 성분을 찾아내는 방법 및 화소의 Run-length를 이용하여 수평선 성분과 수직선 성분을 추출하여 얻어진 교차점을 이용해 대각선성분 을 찾아내는 방법이 있다. 또한 규칙성을 이용한 테이블 추출 방법은 테이블을 구성하는 수직선 성분과 수평선 성분의 규칙성을 찾아내 이를 이용하여 테이블을 벡터화 시킨다. 본 논문에서는 문서 영상 내의 테이블을 효율적으로 벡터화하기 위한 방법으로 규칙성을 이용한 방법을 제안한다.

  • PDF

비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류 (Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications)

  • 모하마드 카이룰 이슬람;파라 자한;민재홍;백중환
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.12-20
    • /
    • 2011
  • 본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

주성분 분석과 이차 판별 분석 기법을 이용한 항공기 복합재료에서의 자동 결함 검출 및 분류 (Automatic Defect Detection and Classification Using PCA and QDA in Aircraft Composite Materials)

  • 김영범;신덕하;황승준;백중환
    • 한국항행학회논문지
    • /
    • 제18권4호
    • /
    • pp.304-311
    • /
    • 2014
  • 본 논문에서는 항공기 복합재료 내부의 결함을 자동으로 검출하고 분류하는 초음파 검사 방식을 제안한다. 결함 검출을 위해서 초음파의 국부 최대값을 이용해 피크(peak) 값을 추출해낸다. 피크의 거리정보를 이용해 히스토그램화 하며 시편의 표면과 바닥의 백월에코(back-wall echo)를 결정한다. 이를 통해 C-scan 영상을 생성한다. 검출된 피크의 평균과 분산을 이용해 임계값을 정하고 그 값으로 결함여부를 판단한다. 결함의 종류를 구분하기 위해서는 주성분 분석(PCA; principal component analysis)와 이차 판별 분석(QDA; quadratic discriminant analysis)를 수행하였다. PCA를 통한 512개의 차원은 주성분으로 변환 시 30개의 주성분에 99% 이상의 분산이 포함되었다. 주성분 개수를 한정시킴으로써 차원 축소를 통해 계산량을 크게 줄였고 오분류를 최소화하였다. 이차 판별 분석을 적용해 결정경계(decision boundary)의 방정식을 얻었고 이를 통해 결함을 분류할 수 있음을 실험을 통해 보였다.

형태학적 정보와 개선된 신경망을 이용한 차량 번호판 인식 (Car Plate Recognition using Morphological Information and Enhanced Neural Network)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.684-689
    • /
    • 2005
  • 본 논문에서는 수평$\cdot$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 신경망을 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평 수직에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ART-1 알고리즘을 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 실제 차량 번호판들을 대상으로 실험한 결과, 수평$GF(2^m)$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출룰이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들 보다 우수한 성능이 있음을 확인하였다.

딥 러닝과 파노라마 영상 스티칭 기법을 이용한 송전선 늘어짐 모니터링 시스템 (The Power Line Deflection Monitoring System using Panoramic Video Stitching and Deep Learning)

  • 박은수;김승환;이상순;류은석
    • 방송공학회논문지
    • /
    • 제25권1호
    • /
    • pp.13-24
    • /
    • 2020
  • 한국에는 전력 분배를 위하여 약 9백만 개의 전신주와 1.3백만 킬로미터의 송전선이 있다. 이러한 많은 전력 설비의 유지보수를 위해서는 많은 인력과 시간이 소요된다. 최근 인공지능을 사용한 여러 고장진단 기술들이 연구되어 오고 있기 때문에 본 논문에서는 송전선의 여러 요인으로 인한 늘어짐을 감지하기 위해 기존의 현장에서의 검증 방법이 아닌 카메라 시스템으로 촬영한 영상에서의 인공 지능 기술을 활용한 송전선 늘어짐 감지 시스템을 제안한다. 제안하는 시스템은 (i) 객체 탐지 시스템을 이용한 송전탑 감지 (ii) 동영상 촬영 데이터의 화질 저하 문제를 해결하기 위한 히스토그램 평활화 기법 (iii) 송전선 전체를 파악하기 위한 파노라마 영상 스티칭(iv) 송전선 탐지 알고리즘 적용 후 파노라마 영상 스티칭 기술을 이용한 늘어짐 판단 과정으로 진행된다. 본 논문에서는 각각의 과정들에 대한 설명 및 실험 결과를 보인다.