• Title/Summary/Keyword: image coder

Search Result 114, Processing Time 0.024 seconds

Study on Motion Vector Re-Estimation for Transcoding of Heterogeneous Video Coder (이종 동영상 부호화기의 트랜스코딩을 위한 움직임 벡터 재추정에 관한 연구)

  • Yoon, Kyu-Seop;Park, Kang-Seo;Chung, Tae-Yun;Park, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.460-467
    • /
    • 2002
  • This paper proposes new motion vector re-estimation techniques for transcoding of heterogenous video coders. The first case is for transcoder of coding format. The coding algorithm with B-picture like MPEG standards is transcoded into the different algorithm without B-picture like H.261 standards. The second case is for transcoder of spatial resolution reduction. It generates a downscaled video bitstream at the video source. The third case is the integrated method that previous two cases are needed simultaneously. These three transcoding algorithms are compared and verified though reconstructed image quality in PSNR, motion vector errors between optimal motion vectors of cascaded trans- coder and motion vectors estimated by proposed methods and the amount of operation.

Development of A Hardware Chain Coder for Industrial Vision Systems (산업용 비젼 시스템을 위한 체인코더의 제작)

  • Rhee, Byungil;Shin, You-Shik;Lim, Joonhong;Suh, Il-Hong;Bien, Zeungnam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.629-639
    • /
    • 1989
  • One of the major issues of the industrial vision systems is lengthy processing time due to bulky data for image coding. To reduce the processing time, a modified chain coding algorithm is proposed in such a way that it is more suitable for hardware implementation. A hardware chain coder is developed and used for learn and recognizing objects by extracting several features. It is shown that the desired vision system is much faster than a typical software based system so that it may be applicable to real-time industrial operations.

  • PDF

Medical Image Compression using Adaptive Subband Threshold

  • Vidhya, K
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.499-507
    • /
    • 2016
  • Medical imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Ultrasound (US) produce a large amount of digital medical images. Hence, compression of digital images becomes essential and is very much desired in medical applications to solve both storage and transmission problems. But at the same time, an efficient image compression scheme that reduces the size of medical images without sacrificing diagnostic information is required. This paper proposes a novel threshold-based medical image compression algorithm to reduce the size of the medical image without degradation in the diagnostic information. This algorithm discusses a novel type of thresholding to maximize Compression Ratio (CR) without sacrificing diagnostic information. The compression algorithm is designed to get image with high optimum compression efficiency and also with high fidelity, especially for Peak Signal to Noise Ratio (PSNR) greater than or equal to 36 dB. This value of PSNR is chosen because it has been suggested by previous researchers that medical images, if have PSNR from 30 dB to 50 dB, will retain diagnostic information. The compression algorithm utilizes one-level wavelet decomposition with threshold-based coefficient selection.

ECVQ for Subband Pyramid Image Coding (ECVQ 를 이용한 영상의 계층적 대역분할 부호화)

  • 이광기;김인겸;정준용;류종일;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.88-96
    • /
    • 1994
  • In this paper, we propose a subband pyramid image coding scheme that uses ECVQ (ntropy Constrained Vector Quantizer). In subband pyramid image coding, each subband can be encoded with a coder matched to the statistics of that particular subband, and available versions of the original image at different resolution are easily obtained. ECVQ, aiming at the minimization of the distortion for a fixed entropy of the quantizer output, is well combined with the subband pyramid image coding which yields high compression ratio and good image quality. The optimum bit allocation to each subbands corresponds to the points where the individual distortion rate curves are of particular slope, weighted to the number of samples in that subband, in designing ECVQ.

  • PDF

Backward Quadtree Disparity Estimation for Efficient Multi-view Image Coder (효율적인 다시점 영상 부호화기를 위한 역방향 사진트리 변이 추정)

  • 최승철;김용태;손광훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1911-1914
    • /
    • 2003
  • This paper proposes efficient system for multiview images using backward quadtree disparity estimation. Previous quadtree method usually divides current image. In this work, backward quadtree divides reference image. So, it does not need to code quadtree data. For backward quadtree, quadtree information map is generated. By using this map, adaptive dividing is possible. And, conventional bi-directional matching method is used with backward quadtree. These methods increase subject and object quality of decoded test images. For multiview images, panorama synthesizing method was used. Panorama image and right-most image are used for reference image for intermediate view images coding.

  • PDF

Hardware Implementation of High Speed CODEC for PACS (PACS를 위한 고속 CODEC의 하드웨어 구현)

  • 유선국;박성욱
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.475-480
    • /
    • 1994
  • For the effective management of medical images, it becomes popular to use computing machines in medical practice, namely PACS. However, the amount of image data is so large that there is a lack of storage space. We usually use data compression techniques to save storage, but the process speed of machines is not fast enough to meet surgical requirement. So a special hardware system processing medical images faster is more important than ever. To meet the demand for high speed image processing, especially image compression and decompression, we designed and implemented the medical image CODEC (COder/DECoder) based on MISD (Multiple Instruction Single Data stream) architecture to adopt parallelism in it. Considering not being a standard scheme of medical image compression/decompression, the CODEC is designed programable and general. In this paper, we use JPEG (Joint Photographic Experts Group) algorithm to process images and evalutate the CODEC.

  • PDF

A binary adaptive arithmetic coding algorithm based on adaptive symbol changes for lossless medical image compression (무손실 의료 영상 압축을 위한 적응적 심볼 교환에 기반을 둔 이진 적응 산술 부호화 방법)

  • 지창우;박성한
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2714-2726
    • /
    • 1997
  • In this paper, adaptive symbol changes-based medical image compression method is presented. First, the differenctial image domain is obtained using the differentiation rules or obaptive predictors applied to original mdeical image. Also, the algorithm determines the context associated with the differential image from the domain. Then prediction symbols which are thought tobe the most probable differential image values are maintained at a high value through the adaptive symbol changes procedure based on estimates of the symbols with polarity coincidence between the differential image values to be coded under to context and differential image values in the model template. At the coding step, the differential image values are encoded as "predicted" or "non-predicted" by the binary adaptive arithmetic encoder, where a binary decision tree is employed. The simlation results indicate that the prediction hit ratios of differential image values using the proposed algorithm improve the coding gain by 25% and 23% than arithmetic coder with ISO JPEG lossless predictor and arithmetic coder with differentiation rules or adaptive predictors, respectively. It can be used in compression part of medical PACS because the proposed method allows the encoder be directly applied to the full bit-planes medical image without a decomposition of the full bit-plane into a series of binary bit-planes as well as lower complexity of encoder through using an additions when sub-dividing recursively unit intervals.

  • PDF

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Medical Image CODEC Hardware Design based on MISD architecture (MISD 구조에 의한 의료 영상 CODEC의 하드웨어 설계)

  • Park, Sung-Wook;Yoo, Sun-Kook;Kim, Sun-Ho;Kim, Nam-Hyeon;Youn, Dae-Hee
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.92-95
    • /
    • 1994
  • As computer systems to make medical practice easy are widely used, a special hardware system processing medical data fast becomes more important. To meet the urgent demand for high speed image processing, especially image compression and decompression, we designed and implemented the medical image CODEC (COder/BECoder) based on MISD(Multiple Instruction Single Data stream) architecture to adopt parallelism in it. Considering not being a standart scheme of medical mage compression/decompress ion, the CODEC is designed programable and general. In this paper, we use JPEG (Joint Photographic Experts Group) algorithm to process images fast and evalutate it.

  • PDF

Object-oriented coder using pyramid structure and local residual compensation (피라미드 구조 및 국부 오차 보상을 이용한 물체지향 부호화)

  • 조대성;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3033-3045
    • /
    • 1996
  • In this paper, we propse an object-oriented coding method in low bit-rate channels using pyramid structure and residual image compensation. In the motion estimation step, global motion is estimated using a set of multiresolution images constructed in a pyramid structure. We split an input image into two regions based on the gradient value. Regions with larte motions obtain observation points at low resolution level to guarantee robustness to noise and to satisfy a motion constraint equation whereas regions with local motions such as eye, and lips get observation points at the original resolution level. Local motion variations and intesity variations of an image reconstructed by the golbal motion are compensated additionally by using the previous residual image component. Finally, the model failure (MF) region is compensated by the pyramid mapping of the previous displaced frame difference (DFD). Computer simulation results show that the proposed method gives better performance that the convnetional one in terms of the peak signal to noise ratio (PSNR), compression ratio (CR), and computational complexity.

  • PDF