• Title/Summary/Keyword: image classification

검색결과 2,661건 처리시간 0.03초

작은 데이터 세트에 대한 새로운 이미지 분류 방법 (Novel Image Classification Method for Small Dataset)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.557-558
    • /
    • 2021
  • 본 논문에서는 소규모 데이터 세트의 이미지 분류 작업에서 모델 과적합 및 비수렴을 해결하고 분류 정확도를 향상시키는 데 주로 사용되는 CNN(Convolutional Neural Network) 기반의 새로운 이미지 분류 방법을 제안한다.

  • PDF

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

Robust Face Recognition under Limited Training Sample Scenario using Linear Representation

  • Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3172-3193
    • /
    • 2018
  • Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.

수도권 도시개발 분석을 위한 규칙기반 영상분류 (A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area)

  • 이진아;이성순
    • Spatial Information Research
    • /
    • 제19권6호
    • /
    • pp.43-54
    • /
    • 2011
  • 본 연구는 위성영상 자료(2000-2009)를 이용하여 성남-용인 인근지역의 지표변화를 시계열 분석하기 위해 규칙기반 영상분류 방법을 제안하였다. 도시지역의 연도별 변화 패턴을 파악하기 위해 통계적/수학적 기반의 규칙에 따라 11개 클래스로 구분하였다. 훈련지역을 설정하지 않는 무감독분류 방법으로서 규칙을 적용할 수 있도록 알고리즘을 일반화 하였다. 분석 결과, 택지개발 등에 의하여 연구범위 내 도시지역면적이 약 1.45배 증가하였으며, 2009년 영상의 분류정확도는 98%로 나타났다. 방법 검증을 위하여 선분류 후비교법을 이용한 토지피복 변화분석 결과와 비교하였다. 다중영상 내 가용한 데이터를 최대한 이용할 수 있었고, 목적에 최적화된 분류가 가능해져, 분류정확도의 향상을 기대할 수 있었다. 본 규칙기반 영상분류 방법은 향후 도시개발 주제도 제작 및 도시개발, 환경변화 모니터링 등 영상 시계열 분석에 다양하게 적용될 수 있을 것이다.

객체 특징점 모델링을 이용한 시멘틱 단서 기반 영상 분류 (Semantic Cue based Image Classification using Object Salient Point Modeling)

  • 박상혁;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.85-89
    • /
    • 2010
  • 대부분의 영상들은 여러 객체 영역들의 시각적인 특징과 각각의 의미들의 조합으로 구성되어 있다. 그러나 일반적으로 영상 처리를 위한 컴퓨터 시스템들은 영상을 특정 객체 영역의 의미 정보 단위로 해석하지 못하기 때문에 사람이 영상을 인지하는 것과 의미적인 차이(semantic gap)가 발생한다. 본 논문에서는 이러한 문제점을 극복하기 위하여 각 객체 영역 단위에서 추출한 고유한 특징점들을 고차원의 의미 정보로 모델링하여 영상을 분류하는 방법을 제안한다. 제안하는 방법은 객체 단위로 추출된 고유한 특징점들의 의미 정보를 특정 객체 영역을 인식하기 위한 의미 단서로 이용한다. 이를 통하여 기존의 영상 분류 방법들에 비하여 인간의 인지 능력과 유사하고 보다 효율적으로 영상을 분류할 수 있는 장점이 있다. 실험 결과는 다양한 카테고리 종류의 영상에 대하여 제안하는 방법의 효과적인 분류 성능을 보여준다.

퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류 (Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector)

  • 이상훈
    • 대한원격탐사학회지
    • /
    • 제19권4호
    • /
    • pp.329-339
    • /
    • 2003
  • 본 연구에서는 무감독 영상분류를 위하여 특성이 다른 센서로 수집된 영상들에 대한 의사결정 수준의 영상 융합기법을 제안하였다. 제안된 기법은 공간 확장 분할에 근거한 무감독 계층군집 영상분류기법을 개개의 센서에서 수집된 영상에 독립적으로 적용한 후 그 결과로 생성되는 분할지역의 퍼지 클래스 벡터(fuzzy class vector)를 이용하여 각 센서의 분류 결과를 융합한다. 퍼지 클래스벡터는 분할지역이 각 클래스에 속할 확률을 표시하는 지시(indicator) 벡터로 간주되며 기대 최대화 (EM: Expected Maximization) 추정 법에 의해 관련 변수의 최대 우도 추정치가 반복적으로 계산되어진다. 본 연구에서는 같은 특성의 센서 혹은 밴드 별로 분할과 분류를 수행한 후 분할지역의 분류결과를 퍼지 클래스 벡터를 이용하여 합성하는 접근법을 사용하고 있으므로 일반적으로 다중센서의 영상의 분류기법에 사용하는 화소수준의 영상융합기법에서처럼 서로 다른 센서로부터 수집된 영상의 화소간의 공간적 일치에 대한 높은 정확도를 요구하지 않는다. 본 연구는 한반도 전라북도 북서지역에서 관측된 다중분광 SPOT 영상자료와 AIRSAR 영상자료에 적용한 결과 제안된 영상 융합기법에 의한 피복 분류는 확장 벡터의 접근법에 의한 영상 융합보다 서로 다른 센서로부터 얻어지는 정보를 더욱 적합하게 융합한다는 것을 보여주고 있다.

Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류 (Object-based Image Classification by Integrating Multiple Classes in Hue Channel Images)

  • 예철수
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.2011-2025
    • /
    • 2021
  • 고해상도 위성영상 분류에서 다양한 색상을 가지는 건물들과 같이 동일한 클래스에 속하지만 색상 정보가 상이한 화소들이 클래스를 구성하는 경우에는 클래스를 대표하는 색상 정보를 결정하기가 어렵다. 본 논문에서는 클래스의 대표적인 색상 정보를 결정하는 문제를 해결하기 위해 HSV(Hue Saturation Value)의 색상 채널을 분할하고 객체 기반의 분류를 수행하는 방법을 제안한다. 이를 위해 RGB 컬러 공간의 입력 영상을 HSV 컬러 공간의 성분으로 변환한 후에 색상(Hue) 성분을 일정 간격의 서브채널로 분할한다. 각 색상 서브채널에 대해 최소거리기반의 영상 분류를 수행하고 분류 결과를 영상 분할 결과와 결합한다. 제안한 방법을 아리랑3A 위성영상에 적용한 결과 overall accuracy는 84.97%, kappa coefficient는 77.56%로 나타났고 상용 소프트웨어 대비 분류 정확도가 10% 이상 개선된 결과를 보였다.

딥러닝 기반의 핵의학 폐검사 분류 모델 적용 (Application of Deep Learning-Based Nuclear Medicine Lung Study Classification Model)

  • 정의환;오주영;이주영;박훈희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권1호
    • /
    • pp.41-47
    • /
    • 2022
  • The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.

이미지 필터와 제한조건을 이용한 문서영상 구조분석 (Document Image Layout Analysis Using Image Filters and Constrained Conditions)

  • 장대근;황찬식
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.311-318
    • /
    • 2002
  • 문서영상 구조분석은 문서영상을 세부 영역으로 분할하는 과정과 분할된 영역을 문자, 그림, 표 등으로 분류하는 과정을 포함한다. 이 중 영역분류 과정에서 영역의 크기, 흑화소 밀도, 화소 분포의 복잡도는 영역을 분류하는 기준이 된다. 그러나 그림의 경우 이러한 기준들의 범위가 넓어 경계를 정하기 어려우므로 다른 형태에 비해 상대적으로 오분류의 비율이 높다. 본 논문에서는 그림과 문자를 분류하는 과정에서 영역의 크기, 흑화소 밀도, 화소 분포의 복잡도에 의한 영향을 줄이기 위하여 메디안 필터를 이용하고, 영역확장 필터(region expanding filter)와 제한 조건들을 이용하여 영역분류에서의 오분류를 수정함으로써 상용제품을 포함한 기존 방법에 비해 그림과 문자의 분류가 우수한 문서영상 구조 분석 방법을 제안한다.

공간정보를 이용한 뇌 자기공명영상 분류 (Classification of Brain MR Images Using Spatial Information)

  • 김형일;김용욱;김준태
    • 한국시뮬레이션학회논문지
    • /
    • 제18권4호
    • /
    • pp.197-206
    • /
    • 2009
  • 의료정보 시스템은 의료영상과 진단정보를 공유할 수 있는 환경을 제공해주는 효과적인 진단 보조 도구이지만 단순히 정보의 저장과 전송만을 제공한다. 이러한 단점을 해결하고 진단활동의 효율성을 높이기 위해서는 의료영상 분류 및 검색 시스템이 필요하다. 의료영상 분류 및 검색 시스템은 질환 영상과 유사한 영상을 제공함으로써 진단활동의 효율성을 높이고, 다양한 사례 확인을 통하여 보다 전문적인 의료활동을 제공할 수 있다. 그러나 기존의 영상 분류 및 검색 시스템은 영상의 표면적인 정보만을 이용하므로 영상이 내포하는 의미를 파악하기 어렵다. 그러므로 영상의 표면적인 정보뿐만 아니라 영상을 구성하는 요소들의 관계를 파악하여 영상을 분류할 수 있는 의료영상 분류 시스템이 필요하다. 본 논문에서 제안한 기법은 뇌 자기공명영상에서 영상의 표면적인 정보와 공간정보를 추출하여 뇌 자기공명영상을 학습하고 분류한다. 영상의 표면적인 정보는 영상 자체가 갖는 색상, 모양 등의 정보로 하위 영상정보라 하고, 영상의 논리정보를 상위 영상정보라 한다. 본 논문에서는 하위 영상정보와 상위 영상정보를 추출할 때 뇌의 해부학적 명칭과 구조를 활용하였다. 하위 영상정보는 뇌 영상의 부분 영역들에 대한 해부학적 명칭을 부여하기 위해 활용되고, 상위 영상정보는 명칭이 부여된 부분 영역들의 관계를 활용하여 정보를 추출한다. 각 정보는 학습과 분류에 사용된다. 실험에서는 질환을 갖는 뇌 자기공명영상을 활용하였다.