In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.
Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3172-3193
/
2018
Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.
본 연구는 위성영상 자료(2000-2009)를 이용하여 성남-용인 인근지역의 지표변화를 시계열 분석하기 위해 규칙기반 영상분류 방법을 제안하였다. 도시지역의 연도별 변화 패턴을 파악하기 위해 통계적/수학적 기반의 규칙에 따라 11개 클래스로 구분하였다. 훈련지역을 설정하지 않는 무감독분류 방법으로서 규칙을 적용할 수 있도록 알고리즘을 일반화 하였다. 분석 결과, 택지개발 등에 의하여 연구범위 내 도시지역면적이 약 1.45배 증가하였으며, 2009년 영상의 분류정확도는 98%로 나타났다. 방법 검증을 위하여 선분류 후비교법을 이용한 토지피복 변화분석 결과와 비교하였다. 다중영상 내 가용한 데이터를 최대한 이용할 수 있었고, 목적에 최적화된 분류가 가능해져, 분류정확도의 향상을 기대할 수 있었다. 본 규칙기반 영상분류 방법은 향후 도시개발 주제도 제작 및 도시개발, 환경변화 모니터링 등 영상 시계열 분석에 다양하게 적용될 수 있을 것이다.
대부분의 영상들은 여러 객체 영역들의 시각적인 특징과 각각의 의미들의 조합으로 구성되어 있다. 그러나 일반적으로 영상 처리를 위한 컴퓨터 시스템들은 영상을 특정 객체 영역의 의미 정보 단위로 해석하지 못하기 때문에 사람이 영상을 인지하는 것과 의미적인 차이(semantic gap)가 발생한다. 본 논문에서는 이러한 문제점을 극복하기 위하여 각 객체 영역 단위에서 추출한 고유한 특징점들을 고차원의 의미 정보로 모델링하여 영상을 분류하는 방법을 제안한다. 제안하는 방법은 객체 단위로 추출된 고유한 특징점들의 의미 정보를 특정 객체 영역을 인식하기 위한 의미 단서로 이용한다. 이를 통하여 기존의 영상 분류 방법들에 비하여 인간의 인지 능력과 유사하고 보다 효율적으로 영상을 분류할 수 있는 장점이 있다. 실험 결과는 다양한 카테고리 종류의 영상에 대하여 제안하는 방법의 효과적인 분류 성능을 보여준다.
본 연구에서는 무감독 영상분류를 위하여 특성이 다른 센서로 수집된 영상들에 대한 의사결정 수준의 영상 융합기법을 제안하였다. 제안된 기법은 공간 확장 분할에 근거한 무감독 계층군집 영상분류기법을 개개의 센서에서 수집된 영상에 독립적으로 적용한 후 그 결과로 생성되는 분할지역의 퍼지 클래스 벡터(fuzzy class vector)를 이용하여 각 센서의 분류 결과를 융합한다. 퍼지 클래스벡터는 분할지역이 각 클래스에 속할 확률을 표시하는 지시(indicator) 벡터로 간주되며 기대 최대화 (EM: Expected Maximization) 추정 법에 의해 관련 변수의 최대 우도 추정치가 반복적으로 계산되어진다. 본 연구에서는 같은 특성의 센서 혹은 밴드 별로 분할과 분류를 수행한 후 분할지역의 분류결과를 퍼지 클래스 벡터를 이용하여 합성하는 접근법을 사용하고 있으므로 일반적으로 다중센서의 영상의 분류기법에 사용하는 화소수준의 영상융합기법에서처럼 서로 다른 센서로부터 수집된 영상의 화소간의 공간적 일치에 대한 높은 정확도를 요구하지 않는다. 본 연구는 한반도 전라북도 북서지역에서 관측된 다중분광 SPOT 영상자료와 AIRSAR 영상자료에 적용한 결과 제안된 영상 융합기법에 의한 피복 분류는 확장 벡터의 접근법에 의한 영상 융합보다 서로 다른 센서로부터 얻어지는 정보를 더욱 적합하게 융합한다는 것을 보여주고 있다.
고해상도 위성영상 분류에서 다양한 색상을 가지는 건물들과 같이 동일한 클래스에 속하지만 색상 정보가 상이한 화소들이 클래스를 구성하는 경우에는 클래스를 대표하는 색상 정보를 결정하기가 어렵다. 본 논문에서는 클래스의 대표적인 색상 정보를 결정하는 문제를 해결하기 위해 HSV(Hue Saturation Value)의 색상 채널을 분할하고 객체 기반의 분류를 수행하는 방법을 제안한다. 이를 위해 RGB 컬러 공간의 입력 영상을 HSV 컬러 공간의 성분으로 변환한 후에 색상(Hue) 성분을 일정 간격의 서브채널로 분할한다. 각 색상 서브채널에 대해 최소거리기반의 영상 분류를 수행하고 분류 결과를 영상 분할 결과와 결합한다. 제안한 방법을 아리랑3A 위성영상에 적용한 결과 overall accuracy는 84.97%, kappa coefficient는 77.56%로 나타났고 상용 소프트웨어 대비 분류 정확도가 10% 이상 개선된 결과를 보였다.
The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.
문서영상 구조분석은 문서영상을 세부 영역으로 분할하는 과정과 분할된 영역을 문자, 그림, 표 등으로 분류하는 과정을 포함한다. 이 중 영역분류 과정에서 영역의 크기, 흑화소 밀도, 화소 분포의 복잡도는 영역을 분류하는 기준이 된다. 그러나 그림의 경우 이러한 기준들의 범위가 넓어 경계를 정하기 어려우므로 다른 형태에 비해 상대적으로 오분류의 비율이 높다. 본 논문에서는 그림과 문자를 분류하는 과정에서 영역의 크기, 흑화소 밀도, 화소 분포의 복잡도에 의한 영향을 줄이기 위하여 메디안 필터를 이용하고, 영역확장 필터(region expanding filter)와 제한 조건들을 이용하여 영역분류에서의 오분류를 수정함으로써 상용제품을 포함한 기존 방법에 비해 그림과 문자의 분류가 우수한 문서영상 구조 분석 방법을 제안한다.
의료정보 시스템은 의료영상과 진단정보를 공유할 수 있는 환경을 제공해주는 효과적인 진단 보조 도구이지만 단순히 정보의 저장과 전송만을 제공한다. 이러한 단점을 해결하고 진단활동의 효율성을 높이기 위해서는 의료영상 분류 및 검색 시스템이 필요하다. 의료영상 분류 및 검색 시스템은 질환 영상과 유사한 영상을 제공함으로써 진단활동의 효율성을 높이고, 다양한 사례 확인을 통하여 보다 전문적인 의료활동을 제공할 수 있다. 그러나 기존의 영상 분류 및 검색 시스템은 영상의 표면적인 정보만을 이용하므로 영상이 내포하는 의미를 파악하기 어렵다. 그러므로 영상의 표면적인 정보뿐만 아니라 영상을 구성하는 요소들의 관계를 파악하여 영상을 분류할 수 있는 의료영상 분류 시스템이 필요하다. 본 논문에서 제안한 기법은 뇌 자기공명영상에서 영상의 표면적인 정보와 공간정보를 추출하여 뇌 자기공명영상을 학습하고 분류한다. 영상의 표면적인 정보는 영상 자체가 갖는 색상, 모양 등의 정보로 하위 영상정보라 하고, 영상의 논리정보를 상위 영상정보라 한다. 본 논문에서는 하위 영상정보와 상위 영상정보를 추출할 때 뇌의 해부학적 명칭과 구조를 활용하였다. 하위 영상정보는 뇌 영상의 부분 영역들에 대한 해부학적 명칭을 부여하기 위해 활용되고, 상위 영상정보는 명칭이 부여된 부분 영역들의 관계를 활용하여 정보를 추출한다. 각 정보는 학습과 분류에 사용된다. 실험에서는 질환을 갖는 뇌 자기공명영상을 활용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.