• Title/Summary/Keyword: image brightness

Search Result 788, Processing Time 0.022 seconds

A Study on the Image Enhancement Method of Digital Mammogram in the Wavelet Domain (웨이블렛 영역에서 디지털 맘모그램의 영상향상 방법에 관한 연구)

  • Jeon, Geum-Sang;Jang, Boo-Hwan;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2012
  • Digital mammogram is effective for detecting the micro-calcification that is early symptom of breast cancer. In the digital mammogram, many image processing techniques have been studied for accurate diagnosis and efficient treatment of micro-calcification lesion. The wavelet based multi-scale method was mainly used to enhance the image contrast. This paper presents an advanced mammography enhancement method which is based both on the brightness and the contrast enhancement in the wavelet domain. The proposed method normalizes a dynamic range using histogram of the image. The brightness is enhanced by modifying coefficients of low frequency components, and the contrast is enhanced by coefficients of high frequency component based on the multi-scale contrast measure. The experiment results show that the proposed method yields better performance of the image enhancement over the existing methods.

Global Contrast Enhancement Method for the Digital Image using 2D Filter to Enhance the edges and JND according to the Surrounding Brightness (Edge 강화 2차원 필터와 주변 밝기에 따른 JND를 이용한 영상의 전역적 대비 향상 방법)

  • Kim, Bongsung;Kang, Bongsoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.99-100
    • /
    • 2015
  • Digital image blur occurs due to various environmental conditions at the time of shooting. Blur produces the low-frequency component in the image. This problem worsens the quality of the digital image. To address this issue, contrast improvement methods has been widely studied. 2D filter to enhance the edges is a simple structure with a fast processing speed. However, the sensitivity of the human visual system is different depending on the surrounding brightness locally. Thus, in this paper, we proposed feature-based contrast enhancement method for the digital image using 2D filter to enhance the edges and JND(Just Noticeable Difference) according to the surrounding brightness. We confirmed the result image of proposed method and identified that the contrast is improved.

  • PDF

Velocity Field Estimation using A Weighted Local Optimization (가중된 국부 최적화 방법을 이용한 속도장의 추정)

  • 이정희;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.490-498
    • /
    • 1993
  • A variety of methods for measuring the velocity from an image sequence use the relationship between the spatial and temporal gradients of image brightness function. In most situations, an additional constraint is required because the velocity is not determined uniquely by a above relationship. Horn and Schunch proposed a constraint that the velocity field should vary smoothly over the image. This requirement, however, forces the velocity field to vary smoothly even across motion boundaries. To complement this probe, Nagel introduced and 'oriented smoothness' constraint which restricts variations of velocity field only in directions with small or no variation of image brightness function. On the other hand, Paquin and Dubois proposed a different type of constraint that the velocity is constant in a small area of image. But, this constraint also creates difficulties at motion boundaries which large variations in velocity field often occur. We propose the method to overcome these difficulties by utilizing the information of discontinuities in image brightness function, and present the experimental results.

  • PDF

SYNTHESIS OF STEREO-MATE THROUGH THE FUSION OF A SINGLE AERIAL PHOTO AND LIDAR DATA

  • Chang, Ho-Wook;Choi, Jae-Wan;Kim, Hye-Jin;Lee, Jae-Bin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.508-511
    • /
    • 2006
  • Generally, stereo pair images are necessary for 3D viewing. In the absence of quality stereo-pair images, it is possible to synthesize a stereo-mate suitable for 3D viewing with a single image and a depth-map. In remote sensing, DEM is usually used as a depth-map. In this paper, LiDAR data was used instead of DEM to make a stereo pair from a single aerial photo. Each LiDAR point was assigned a brightness value from the original single image by registration of the image and LiDAR data. And then, imaginary exposure station and image plane were assumed. Finally, LiDAR points with already-assigned brightness values were back-projected to the imaginary plane for synthesis of a stereo-mate. The imaginary exposure station and image plane were determined to have only a horizontal shift from the original image's exposure station and plane. As a result, the stereo-mate synthesized in this paper fulfilled epipolar geometry and yielded easily-perceivable 3D viewing effect together with the original image. The 3D viewing effect was tested with anaglyph at the end.

  • PDF

A Nonlinear Image Enhancement Method for Digital Mammogram (디지털 맘모그램을 위한 비선형 영상 향상 방법)

  • Jeon, Geum-Sang;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • Mammography is the most common technique for the early detection of breast cancer. To diagnose correctly and treat of breast cancer efficiently, many image enhancement methods have been developed. This paper presents a nonlinear image enhancement method for the enhancement of digital mammogram. The proposed method is composed of a nonlinear function for brightness improvement and a nonlinear filter for contrast enhancement. The nonlinear function improves the brightness of dark area and extends the dynamic range of bright area, and the nonlinear filter efficiently enhances the specific regions and objects of the mammogram. The final enhanced image was obtained by combining the processed image with the nonlinear function and the filtered image with the nonlinear filter. The proposed nonlinear image enhancement method was confirmed the enhanced performance comparing with other existing methods.

Identification and Correction of Microlens-array Error in an Integral-imaging-microscopy System

  • Imtiaz, Shariar Md;Kwon, Ki-Chul;Alam, Md. Shahinur;Hossain, Md. Biddut;Changsup, Nam;Kim, Nam
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.524-531
    • /
    • 2021
  • In an integral-imaging microscopy (IIM) system, a microlens array (MLA) is the primary optical element; however, surface errors impede the resolution of a raw image's details. Calibration is a major concern with regard to incorrect projection of the light rays. A ray-tracing-based calibration method for an IIM camera is proposed, to address four errors: MLA decentering, rotational, translational, and subimage-scaling errors. All of these parameters are evaluated using the reference image obtained from the ray-traced white image. The areas and center points of the microlens are estimated using an "8-connected" and a "center-of-gravity" method respectively. The proposed approach significantly improves the rectified-image quality and nonlinear image brightness for an IIM system. Numerical and optical experiments on multiple real objects demonstrate the robustness and effectiveness of our proposed method, which achieves on average a 35% improvement in brightness for an IIM raw image.

Welding Bead Detection Inspection Using the Brightness Value of Vertical and Horizontal Direction (수직 및 수평 방향의 밝깃값을 이용한 용접 비드 검출 검사)

  • Jae Eun Lee;Jong-Nam Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.241-248
    • /
    • 2022
  • Shear Reinforcement of Dual Anchorage(SRD) is used to reinforce the safety of reinforced concrete structures at construction sites. Welding is used to make shear reinforcement, and welding plays an important role in determining productivity and competitiveness of products. Therefore, a weld bead detection inspection is required. In this paper, we suggest an algorithm for inspecting welding beads using image data of welding beads. First, the proposed algorithm calculates a brightness value in a vertical direction in an image, and then divides a welding bead in a vertical direction by finding a position corresponding to a 50% height point of the brightness value distribution in the image. The welding bead area is also divided in the same way for the horizontal direction, and then the segmentation image is analyzed if there is a welding bead. The proposed algorithm reduced the amount of computation by performing analysis after specifying the region of interest. In addition, accuracy could be improved by using all brightness values in the vertical and horizontal directions using the difference of brightness between the base metal and the welding bead region in the SRD image. The experiment compared the analysis results using five algorithms, such as K-mean and K-neighborhood, as a method to detect if there is a welding bead, and the experimental result proved that the proposed algorithm was the most accurate.

Automatic TFT-LCD Mura Inspection Based on Studentized Residuals in Regression Analysis

  • Chuang, Yu-Chiang;Fan, Shu-Kai S.
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.148-154
    • /
    • 2009
  • In recent days, large-sized flat-panel display (FPD) has been increasingly applied to computer monitors and TVs. Mura defects, appearing as low contrast or non-uniform brightness region, sometimes occur in manufacturing of the Thin-Film Transistor Liquid-Crystal Displays (TFT-LCD). Implementation of automatic Mura inspection methods is necessary for TFT-LCD production. Various existing Mura detection methods based on regression diagnostics, surface fitting and data transformation have been presented with good performance. This paper proposes an efficient Mura detection method that is based on a regression diagnostics using studentized residuals for automatic Mura inspection of FPD. The input image is estimated by a linear model and then the studentized residuals are calculated for filtering Mura regions. After image dilation, the proposed threshold is determined for detecting the non-uniform brightness region in TFT-LCD by means of monitoring the every pixel in the image. The experimental results obtained from several test images are used to illustrate the effectiveness and efficiency of the proposed method for Mura detection.

A Weight Map Based on the Local Brightness Method for Adaptive Unsharp Masking (적응형 언샤프 마스킹을 위한 지역적 밝기 기반의 가중치 맵 생성 기법)

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.821-828
    • /
    • 2018
  • Image Enhancement is used in various applications. Among them, unsharp masking methods can improve the contrast with a simple operation. However, it has problems of noise enhancement and halo effect caused by the use of a single filter. To solve this problems, adaptive processing using multi-scale and bilinear filters is being studied. These methods are effective for improving the halo effect, but it require a lot of calculation time. In this paper, we want to simplify adaptive filtering by generating a weight map based on local brightness. This weight map enables adaptive processing that eliminates the halo effect through a single multiplication operation. Through experiments, we confirmed the suppression of the halo effect through the result image of the proposed algorithm and existing algorithm.

An Image Contrast Enhancement Method Using Brightness Preseving on the Linear Approximation CDF (선형 추정 CDF에서 밝기 보존을 이용한 이미지 콘트라스트 향상 기법)

  • Cho Hwa-Hyun;Choi Myung-Ryul
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.779-784
    • /
    • 2004
  • In this paper, we have proposed an image contrast control method using brightness preserving on the FPD(Flat Panel Display). The proposed method can be easily applied to the FPD required real-time processing, since hardware complexity is greatly reduced using linear approximation method of CDF(Cumulative Density Function). For effective processing of the proposed algorithm, we have utilized the sample value of CDF and Barrel Shift. Visual test and standard deviation of their histogram have been introduced to evaluate the resultant output images of the pro-posed method and the original ones.