• Title/Summary/Keyword: image Information

Search Result 19,796, Processing Time 0.04 seconds

Scale Invariant Auto-context for Object Segmentation and Labeling

  • Ji, Hongwei;He, Jiangping;Yang, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2881-2894
    • /
    • 2014
  • In complicated environment, context information plays an important role in image segmentation/labeling. The recently proposed auto-context algorithm is one of the effective context-based methods. However, the standard auto-context approach samples the context locations utilizing a fixed radius sequence, which is sensitive to large scale-change of objects. In this paper, we present a scale invariant auto-context (SIAC) algorithm which is an improved version of the auto-context algorithm. In order to achieve scale-invariance, we try to approximate the optimal scale for the image in an iterative way and adopt the corresponding optimal radius sequence for context location sampling, both in training and testing. In each iteration of the proposed SIAC algorithm, we use the current classification map to estimate the image scale, and the corresponding radius sequence is then used for choosing context locations. The algorithm iteratively updates the classification maps, as well as the image scales, until convergence. We demonstrate the SIAC algorithm on several image segmentation/labeling tasks. The results demonstrate improvement over the standard auto-context algorithm when large scale-change of objects exists.

Developing Management System of Medical Image Information with USB 2.0 (USB 2.0을 활용한 의료 영상정보 관리시스템 개발)

  • Choi, Jung-Sang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.51-57
    • /
    • 2006
  • This study is concerned with image information management system for small scale hospital. We intended to developing image management system which is used of the existing analog devices such as medical camera, supersonic analyser, endoscope etc. We developed a video in interface board based USB 2.0 for handling image in real time. It is capable of transmitting image input signal like as NTSC, PAL to personal computer through USB 2.0. The developed the board of 40 speeds compared with the exiting system based USB 1.0. Especially the developed system is very helpful for small hospital like as dental clinic, because it is easy and convenient to manage image information without expert. So it will provide reduction of time and cost for handling image information(collecting, saving, retrieval, transmitting image).

Deep Reference-based Dynamic Scene Deblurring

  • Cunzhe Liu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.653-669
    • /
    • 2024
  • Dynamic scene deblurring is a complex computer vision problem owing to its difficulty to model mathematically. In this paper, we present a novel approach for image deblurring with the help of the sharp reference image, which utilizes the reference image for high-quality and high-frequency detail results. To better utilize the clear reference image, we develop an encoder-decoder network and two novel modules are designed to guide the network for better image restoration. The proposed Reference Extraction and Aggregation Module can effectively establish the correspondence between blurry image and reference image and explore the most relevant features for better blur removal and the proposed Spatial Feature Fusion Module enables the encoder to perceive blur information at different spatial scales. In the final, the multi-scale feature maps from the encoder and cascaded Reference Extraction and Aggregation Modules are integrated into the decoder for a global fusion and representation. Extensive quantitative and qualitative experimental results from the different benchmarks show the effectiveness of our proposed method.

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

Implementation of Annotation-Based and Content-Based Image Retrieval System using (영상의 에지 특징정보를 이용한 주석기반 및 내용기반 영상 검색 시스템의 구현)

  • Lee, Tae-Dong;Kim, Min-Koo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.510-521
    • /
    • 2001
  • Image retrieval system should be construct for searching fast, efficient image be extract the accurate feature information of image with more massive and more complex characteristics. Image retrieval system are essential differences between image databases and traditional databases. These differences lead to interesting new issues in searching of image, data modeling. So, cause us to consider new generation method of database, efficient retrieval method of image. In this paper, To extract feature information of edge using in searching from input image, we was performed to extract the edge by convolution Laplacian mask and input image, and we implemented the annotation-based and content-based image retrieval system for searching fast, efficient image by generation image database from extracting feature information of edge and metadata. We can improve the performance of the image contents retrieval, because the annotation-based and content-based image retrieval system is using image index which is made up of the content-based edge feature extract information represented in the low level of image and annotation-based edge feature information represented in the high level of image. As a conclusion, image retrieval system proposed in this paper is possible the accurate management of the accumulated information for the image contents and the information sharing and reuse of image because the proposed method do construct the image database by metadata.

  • PDF

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

Robust Image Hashing for Tamper Detection Using Non-Negative Matrix Factorization

  • Tang, Zhenjun;Wang, Shuozhong;Zhang, Xinpeng;Wei, Weimin;Su, Shengjun
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • The invariance relation existing in the non-negative matrix factorization (NMF) is used for constructing robust image hashes in this work. The image is first re-scaled to a fixed size. Low-pass filtering is performed on the luminance component of the re-sized image to produce a normalized matrix. Entries in the normalized matrix are pseudo-randomly re-arranged under the control of a secret key to generate a secondary image. Non-negative matrix factorization is then performed on the secondary image. As the relation between most pairs of adjacent entries in the NMF's coefficient matrix is basically invariant to ordinary image processing, a coarse quantization scheme is devised to compress the extracted features contained in the coefficient matrix. The obtained binary elements are used to form the image hash after being scrambled based on another key. Similarity between hashes is measured by the Hamming distance. Experimental results show that the proposed scheme is robust against perceptually acceptable modifications to the image such as Gaussian filtering, moderate noise contamination, JPEG compression, re-scaling, and watermark embedding. Hashes of different images have very low collision probability. Tampering to local image areas can be detected by comparing the Hamming distance with a predetermined threshold, indicating the usefulness of the technique in digital forensics.

  • PDF

Generative Adversarial Networks for single image with high quality image

  • Zhao, Liquan;Zhang, Yupeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4326-4344
    • /
    • 2021
  • The SinGAN is one of generative adversarial networks that can be trained on a single nature image. It has poor ability to learn more global features from nature image, and losses much local detail information when it generates arbitrary size image sample. To solve the problem, a non-linear function is firstly proposed to control downsampling ratio that is ratio between the size of current image and the size of next downsampled image, to increase the ratio with increase of the number of downsampling. This makes the low-resolution images obtained by downsampling have higher proportion in all downsampled images. The low-resolution images usually contain much global information. Therefore, it can help the model to learn more global feature information from downsampled images. Secondly, the attention mechanism is introduced to the generative network to increase the weight of effective image information. This can make the network learn more local details. Besides, in order to make the output image more natural, the TVLoss function is introduced to the loss function of SinGAN, to reduce the difference between adjacent pixels and smear phenomenon for the output image. A large number of experimental results show that our proposed model has better performance than other methods in generating random samples with fixed size and arbitrary size, image harmonization and editing.

An Image Retrieving Scheme Using Salient Features and Annotation Watermarking

  • Wang, Jenq-Haur;Liu, Chuan-Ming;Syu, Jhih-Siang;Chen, Yen-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.213-231
    • /
    • 2014
  • Existing image search systems allow users to search images by keywords, or by example images through content-based image retrieval (CBIR). On the other hand, users might learn more relevant textual information about an image from its text captions or surrounding contexts within documents or Web pages. Without such contexts, it's difficult to extract semantic description directly from the image content. In this paper, we propose an annotation watermarking system for users to embed text descriptions, and retrieve more relevant textual information from similar images. First, tags associated with an image are converted by two-dimensional code and embedded into the image by discrete wavelet transform (DWT). Next, for images without annotations, similar images can be obtained by CBIR techniques and embedded annotations can be extracted. Specifically, we use global features such as color ratios and dominant sub-image colors for preliminary filtering. Then, local features such as Scale-Invariant Feature Transform (SIFT) descriptors are extracted for similarity matching. This design can achieve good effectiveness with reasonable processing time in practical systems. Our experimental results showed good accuracy in retrieving similar images and extracting relevant tags from similar images.

Thangka Image Inpainting Algorithm Based on Wavelet Transform and Structural Constraints

  • Yao, Fan
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1129-1144
    • /
    • 2020
  • The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.