• Title/Summary/Keyword: ignitor

Search Result 64, Processing Time 0.021 seconds

The Design of Acoustic Resonance Free and Dimmable Electronic Ballast for 1kW MHL (음향 공명 제거 및 조광 제어가 가능한 1kW 메탈 핼라이드 램프용 전자식 안정기 설계)

  • Lee, Bong-Jin;Park, Chong-Yun;Kim, Ki-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1782-1789
    • /
    • 2008
  • This paper presents the design of acoustic resonance(AR) free and dimmable electronic ballast for 1kW Metal-Halide Lamp(MHL). The proposed Ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction(PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation and dimming control. Whereas a passive PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigenvalue frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. For dimming, the method, which modulated drive frequency of FB inverter using the control of DC level by microprocessor, was used. The Dimming ranged at least from 600W to 1kw as rated power of the lamp with 4 stages. Performance of the proposed technique was validated through numerical analysis, computer simulation using Pspice and by applying it to an electronic ballast for a prototype 1kW MHL.

The high Efficiency Ballast for MHD Lamp with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.356-362
    • /
    • 2005
  • In this paper, in order to develop a simple and high efficient ballast without an external ignitor, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The Internal LC resonance of the buck converter is used to generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and trun off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about 4$\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified nth hardware experiments.

Ignition Characteristics of Combustion Chamber with $LO_X$ Lead Cyclogram for Liquid Rocket Engine (액체로켓엔진 연소기 산화제 선공급 Cyclogram에 의한 점화특성)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hhyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-142
    • /
    • 2008
  • Ignition characteristics of combustion chamber with LOx lead cyclogram for liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Cold flow test to determine the filling time of propellant for cyclogram with LOx lead supply, ignition test to check the ability to ignite starting fuel from the ignitor, low pressure combustion test to check the propagation of flame into main fuel-oxidizer mixture from starting fuel and the main combustion stage, and design point combustion test to check the combustion performance were performed. Ignition and combustion tests with LOx lead supply were successfully performed and the stable cyclogram of start sequence for combustion chamber was developed.

  • PDF

Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering (방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발)

  • Shin, Yong-Deok;Choi, Won-Seok;Ko, Tae-Hun;Lee, Jung-Hoon;Ju, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.