• Title/Summary/Keyword: ignition location

Search Result 58, Processing Time 0.023 seconds

Influence of Pyrolyzing Fuel Disposition on Combustion Phenomena in a Cylindrical Enclosure (원형공간내 열분해 연료의 공간배치가 연소현상에 미치는 영향)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.680-685
    • /
    • 2000
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Numerical studies have been performed over overheat ratio, and vertical fuel eccentricity. The location of flame onset is affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

  • PDF

Effects of Aromatics and T90 Temperature for High Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 고세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 2011
  • The aim of this study is to investigate the effects of aromatics and T90 temperature for high cetane number (CN) of diesel fuels on combustion and exhaust emissions in low-temperature diesel combustion in a 1.9 L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Four sets of fuels with CN 55, aromatic content of 20% or 45% (vol. %), and T90 temperature of $270^{\circ}C$ or $340^{\circ}C$ were tested. Given engine operating conditions, all the fuels showed the same tendency of decrease of PM with an increase of an ignition delay time. At the same ignition delay time, the fuels with high T90 produced higher PM. At the same MFB50% location the amount of NOx was similar for all the fuels. Furthermore, at the same ignition delay time the amounts of THC and CO were similar as well for all the fuels. The amount of THC and CO increased with an extension of the ignition delay time mainly because of the increase of fuel-air over-mixing.

Development of Gas Detector Location Index Technique to Prevent Explosion Accidents of Offshore Plant (해양플랜트 폭발사고 방지를 위한 가스감지기 위치 선정 방법 연구)

  • Sohn, Jung Min;Paik, Jeom Kee;Kim, Sang Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Release of hazardous and flammable gas is a significant contributor to risk. The ignition of flammable gas clouds can lead to explosion accidents in the offshore installations. A gas detector, which is one of active protect systems, brings the module into a safe state through emergency shut down processes and reduces the damage by eliminating the dangerous releases. It is critical to understand the gas release, the wind field, and the complex geometry of installations to determine gas detector placement. In this paper, the Gas detector Location Index (GLI) which is a novel index for optimal detector location determination to efficiently prevent explosion accident using probabilistic approach.

The Method of Linking Fire Survey Data with Satellite Image-based Fire Data (산불피해대장 정보와 위성영상 기반 산불발생데이터의 연계 방안)

  • Kim, Taehee;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1125-1137
    • /
    • 2020
  • This study aimed to propose the method of linking satellite image-based forest fire data to supplement the limitation of forest fire survey data that records only the ignition location and area of forest fire. For this purpose, a method was derived to link the fire survey data provided by the Korea Forest Service between January 2012 and December 2019 with MODIS and VIIRS image-based forest fire data. As a result, MODIS and VIIRS-based forest fire data out of 191 wildfires in the forest fire survey data were able to identify 11% and 44% of fire damage area, respectively. An average of 56% of forest damage area was extracted from VIIRS-based forest fire data compared to forest fire areas identified by high-resolution Sentinel-2A satellites. Therefore, for large-scale forest fires, VIIRS wildfire data can be used to compensate for the limitations of forest fire survey data that records only the ignition location and area.

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.858-863
    • /
    • 2001
  • In this paper, the test and result of flow and combustion for 21AFR lean fuel models are described. The necessity to develop the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of new designed 21AFR lean modules, the hydraulic tests in stereo lithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a results of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1. The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

  • PDF

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

Numerical study of the Effect of Ventilation Condition on Rolling Stock Fire Growth through the FDS Simulation (환기량 조건이 열차 화재 성장에 미치는 영향성에 대한 FDS 화재 시뮬레이션)

  • Yang, Sungl-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.124-132
    • /
    • 2010
  • To predict and analyze the rolling stock's fire growth is considered not only important factor in estimating hazard analysis of rolling stock, but also a primary factor in aspect of a rail load facility. Because it's could be regarded as a ignition source in risk assesment for the facility i.e. tunnel and station. However, currently, standardized method to predict and analyze the fire growth has not been completed yet. it is due to the fact that fire growth is not only depended on thermal property of interior materials, but also is affected dominantly by various factors such as ignition source (characterized by location, duration, and intensity), train running condition and in/exterior ventilation condition. Especially, ventilation condition is one of the most effective factor to affect fire growth in compartment space as noticed by under-ventilation fire condition. In this study, the effect of each ventilation condition on fire growth and load were examined through the numerical method through FDS (Fire Dynamics Simulator).

  • PDF

Experiment and Analysis of Real-Scale Fire Test for Establishment of Design Fire in Building Structures (건축구조물의 설계화재정립을 위한 실규모 화재실험 및 분석)

  • Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.119-120
    • /
    • 2014
  • In this study, we looked into the method to establish fire growth rate by buildings use for growing fire at the beginning of a fire considering the characteristics of the combustibles in a performance-based design. Actual conditions survey and literature review were carried out for the fire load and exposed surface area of combustibles to establish design fire by domestic building use. As a results, a simplified prediction equation of fire growth rate which depends on fire load and weight of combustibles could be derived by calculating the relation between the fire load and the fire growth rate of an initial fire through investigation of combustibles by domestic building use.Also, as a result of analyzing the placement of combustibles and location of the ignition source, it was found that the influence of the materials of the combustibles and the materials of the combustibles adjacent to the ignition source is big. Though 4 different experiments were carried out for the evaluation, the result of comparing the findings with those of FGR model showed that the fire growth rate was similarly derived.

  • PDF

A experimental Study on Insulation Breaking Fire Case of Starter Motor B Terminal (스타트모터 B단자 절연파괴 화재사례에 대한 실험적 연구)

  • Woo, Seung Woo;Park, J.M.;Hyun, B.S.;Nam, J.W.;Park, W.S.;Kim, J.P.;Cho, Y.J.;Goh, J.M.;Park, N.K.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.55-62
    • /
    • 2019
  • In this paper, we introduce a case of a fire accident during parking of a large truck that is repeatedly occurring. The shape and location of the combustion and electrical singularity commonly found in other vehicle fire accidents could limit the starter motor as the ignition section. In addition, it was possible to confirm the electrical melting singularity that could act as a cause of ignition between the start motor B terminal and the start motor enclosure. By combining the above investigations and investigations, it was possible to estimate the electric fire expressed from insulation breaking of the starter motor B terminal, and by using the renewable starter motor comparison product mounted on the fire vehicle, an experiment was performed to reproduce the ignition process from the starter motor under specific conditions. So. It is hoped that this will raise awareness about vehicle fires, which can lead to large fires or casualties, share the risks of using starter motors for regeneration, and help in the rapid and accurate investigation of similar vehicle fires in the future.

A Study on the Fire Risk for Self-regulating Heating Cable (정온전선의 화재 위험성에 관한 연구)

  • Jung Hyun Lee;Si Hyun Kim;Ye Jin Park;Sin Dong Kang;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.7-13
    • /
    • 2024
  • This study examines the physical characteristics of self-regulating heating cables caused by increased temperature and fire risk due to local degradation. A thermo hygrostat system, a convection dryer, a digital multimeter (Agilent 34465 A), NI DAQ, and the LabVIEW program were used to assess the physical properties in response to temperature fluctuations. As the temperature increases, the resistance of the self-regulating heating cable increases; however, when the critical point is exceeded, the resistance sharply decreases. A problem arises when the resistance value cannot return to its original state even though the temperature is lowered to the initial state. Moreover, when the ambient temperature rises while power is applied, the resistance value initially increases, and the flowing current decreases, maintaining a constant state. However, when the critical temperature is exceeded, the flowing current increases because of a rapid decrease in the resistance value, progressing to ignition. When the resistance value decreases because of the deterioration of one local area, the total resistance value becomes less than the initial resistance value. Therefore, the flowing current increases and an ignition problem occurs at one location where deterioration occurs. Despite the sustained flames and arcs resulting from the changes in the overall physical properties of the self-regulating heating cable and resistance variations due to local decline, the fire continued as the flowing current was lower than the operating current of the circuit breaker, failing to cut the power. In the case of self-regulating heating cables and heating wires, which are the leading causes of fires in winter, efforts are needed to ensure the need for periodic maintenance and the use of KS-certified products.