• Title/Summary/Keyword: identifiability

Search Result 54, Processing Time 0.023 seconds

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.

ON THE STUDY OF SOLUTION UNIQUENESS TO THE TASK OF DETERMINING UNKNOWN PARAMETERS OF MATHEMATICAL MODELS

  • Avdeenko, T.V.;Je, Hai-Gon
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.251-266
    • /
    • 2000
  • The problem of solution uniqueness to the task of determining unknown parameters of mathematical models from input-output observations is studied. This problem is known as structural identifiability problem. We offer a new approach for testing structural identifiability of linear state space models. The approach compares favorably with numerous methods proposed by other authors for two main reasons. First, it is formulated in obvious mathematical form. Secondly, the method does not involve unfeasible symbolic computations and thus allows to test identifiability of large-scale models. In case of non-identifiability, when there is a set of solutions to the task, we offer a method of computing functions of the unknown parameters which can be determined uniquely from input-output observations and later used as new parameters of the model. Such functions are called parametric functions capable of estimation. To develop the method of computation of these functions we use Lie group transformation theory. Illustrative example is given to demonstrate applicability of presented methods.

  • PDF

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

Parameter identifiability of Boolean networks with application to fault diagnosis of nuclear plants

  • Dong, Zhe;Pan, Yifei;Huang, Xiaojin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.599-605
    • /
    • 2018
  • Fault diagnosis depends critically on the selection of sensors monitoring crucial process variables. Boolean network (BN) is composed of nodes and directed edges, where the node state is quantized to the Boolean values of True or False and is determined by the logical functions of the network parameters and the states of other nodes with edges directed to this node. Since BN can describe the fault propagation in a sensor network, it can be applied to propose sensor selection strategy for fault diagnosis. In this article, a sufficient condition for parameter identifiability of BN is first proposed, based on which the sufficient condition for fault identifiability of a sensor network is given. Then, the fault identifiability condition induces a sensor selection strategy for sensor selection. Finally, the theoretical result is applied to the fault diagnosis-oriented sensor selection for a nuclear heating reactor plant, and both the numerical computation and simulation results verify the feasibility of the newly built BN-based sensor selection strategy.

A Consideration on the Identifiability for Blind Signal Separation in MIMO LTI Channels (MIMO LTI 채널에서의 블라인드 신호분리시의 식별성에 대한 고찰)

  • Kwon, Soon-Man;Kim, Seog-Joo;Lee, Jong-Moo;Kim, Choon-Kyung;Cho, Chang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.265-267
    • /
    • 2004
  • A blind separation problem in a multiple-input-multiple-output (MIMO) linear time-invariant (LTI) system with finite-alphabet inputs is considered. A discrete-time matrix equation model is used to describe the input-output relation of the system in order to make full use of the advantages of modern digital signal processing techniques. At first, ambiguity problem is investigated. Then, based on the results of the investigation, a new identifiability condition is proposed for the case of an input-data set which is widely used in digital communication. A probability bound such that an arbitrary input matrix satisfies the identifiability condition is derived. Finally, Monte-Carlo simulation is performed to demonstrate the validity of our suggestions.

  • PDF

Test for Local Structural Identifiability of Linear Equations of Motion for Submergibles (몰수체 선형 운동방정식의 지역 구조 가식별성 조사)

  • Chan-Ki Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • In this paper, the issue of local structural identifiability of linear equations of motion with non-linear parametrizations is discussed. The test method is resented that provides analytical expressions for information matrices of which the rack determines identifiability. And this method is applied to investigate local structural identifiability of linear equations of motion for a submergible vehicle. As a result, it is showed that with given parameters, the linear equations of motion do not satisfy the definition of local identifiabiliy according Glover & Willems.

  • PDF

Regional Identifiability of Spatially-Varying Parameters in Distributed Parameter Systems of Hyperbolic Type

  • Nakagiri, Shin-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.423-428
    • /
    • 1998
  • This paper studies the regional identifiability of spatially-varying parameters in distributed parameter systems of hyperbolic type. Let Ω be a bounded domain of R$^n$and let Ωo be a subregion of the closed domain Ω. The distributed parameter systems having unknown parameters defined on Ω are described by the second order evolution equations in the filbert space L$^2$(Ω) and the observations are made on the subregion Ωo ⊂ Ω. The regional identifiability is formulated as the uniqueness of parameters by the identity of solutions on the subregion. Several regional identifiability results of the spatially-varying parameters of hyperbolic distributed parameter systems are established by means of the Riesz spectral representations.

  • PDF

Mode identifiability of a cable-stayed bridge based on a Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.471-489
    • /
    • 2016
  • Modal identification based on ambient vibration data has attracted extensive attention in the past few decades. Since the excitation for ambient vibration tests is mainly from the environmental effects such as wind and traffic loading and no artificial excitation is applied, the signal to noise (s/n) ratio of the data acquired plays an important role in mode identifiability. Under ambient vibration conditions, certain modes may not be identifiable due to a low s/n ratio. This paper presents a study on the mode identifiability of an instrumented cable-stayed bridge with the use of acceleration response data measured by a long-term structural health monitoring system. A recently developed fast Bayesian FFT method is utilized to perform output-only modal identification. In addition to identifying the most probable values (MPVs) of modal parameters, the associated posterior uncertainties can be obtained by this method. Likewise, the power spectral density of modal force can be identified, and thus it is possible to obtain the modal s/n ratio. This provides an efficient way to investigate the mode identifiability. Three groups of data are utilized in this study: the first one is 10 data sets including six collected under normal wind conditions and four collected during typhoons; the second one is three data sets with wind speeds of about 7.5 m/s; and the third one is some blind data. The first two groups of data are used to perform ambient modal identification and help to estimate a critical value of the s/n ratio above which the deficient mode is identifiable, while the third group of data is used to perform verification. A couple of fundamental modes are identified, including the ones in the vertical and transverse directions respectively and coupled in both directions. The uncertainty and s/n ratio of the deficient mode are investigated and discussed. A critical value of the modal s/n ratio is suggested to evaluate the mode identifiability of the deficient mode. The work presented in this paper could provide a base for the vibration-based condition assessment in future.

Modal identifiability of a cable-stayed bridge using proper orthogonal decomposition

  • Li, M.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.413-429
    • /
    • 2016
  • The recent research on proper orthogonal decomposition (POD) has revealed the linkage between proper orthogonal modes and linear normal modes. This paper presents an investigation into the modal identifiability of an instrumented cable-stayed bridge using an adapted POD technique with a band-pass filtering scheme. The band-pass POD method is applied to the datasets available for this benchmark study, aiming to identify the vibration modes of the bridge and find out the so-called deficient modes which are unidentifiable under normal excitation conditions. It turns out that the second mode of the bridge cannot be stably identified under weak wind conditions and is therefore regarded as a deficient mode. To judge if the deficient mode is due to its low contribution to the structural response under weak wind conditions, modal coordinates are derived for different modes by the band-pass POD technique and an energy participation factor is defined to evaluate the energy participation of each vibration mode under different wind excitation conditions. From the non-blind datasets, it is found that the vibration modes can be reliably identified only when the energy participation factor exceeds a certain threshold value. With the identified threshold value, modal identifiability in use of the blind datasets from the same structure is examined.

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.