• Title/Summary/Keyword: ice structure at freezing front

Search Result 2, Processing Time 0.036 seconds

Effects of Freezing Conditions on the Concentration-Efficiency in the Progressive Freeze-Concentration (Progressive Freezing에 의한 동결 농축법에 있어서의 농축효과에 미치는 동결조건의 영향)

  • 배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.984-989
    • /
    • 1995
  • The concentration-efficiencyh of blue dextran solution in the progressive freeze-concentration was related to the freezing conditions such as the freezing speed and the stirring speed in the solution phase. From the theoreticla balance equation of heat and mass transfer at freezing front, the relationship between the freezing conditions and the ice structure at freezing front was drived. A high freeze-concentration efficiency was obtained under the operating conditions represented by a low speed of freezing and a high speed of stirring. The operating conditions were related to a smooth solid-liquid interface and these results were well explained by the theoretical equation. Effect of the solute component size on the concentration efficiency in the progressive freezeconcentration was also tested. The concentration efficiency of latex particles showed a lower value than that of blue dextran, however, its difference was insignificant.

  • PDF

Effect of Freezing Conditions on the Formation of Ice Crystals in Food during Freezing Process (식품의 동결중에 생성되는 빙결정에 미치는 동결조건의 영향)

  • 공재열;김정한;김민용;배승권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 1992
  • The reaching time to the freezing point was to be fast in the order of 2% agar gel, 5% agar gel, 20% gelatin gel, pork, respectively. The freezing time and the passing time through the zone of the maximum ice crystal formation had linear relationship with the coolant temperature. The average diameter d$_{p}$ of ice crystal in a soybean protein gel and the moving of freezing front were represented an inverse proportion, and the moving velocity of freezing front was shown as 3.4$\times$10$^{-6}$ $\textrm{cm}^2$/sec from predicted theoretical formula. This value was very close to experimental results. The storage temperature did not give any influences for the growth of ice crystal in inside soybean protein gels during freezing conservation. The relationship between freezing condition and structure of freezing front was as follows : (moving velocity of freezing front) : (mass transfer rate of water at freezing point)$\times$(surface area of freezing front).

  • PDF