• 제목/요약/키워드: i.i.d.

검색결과 13,142건 처리시간 0.037초

학영기전아동(學齡期前兒童)의 영양실태조사(營養實態調査) (A Survey of Nutritional Status on Pre-School Children in Korea)

  • 주진순;오승호
    • Journal of Nutrition and Health
    • /
    • 제9권2호
    • /
    • pp.68-86
    • /
    • 1976
  • 1. 식품(食品) 섭취(攝取) 상태(狀態) 각(各) 지역별(地域別) 남녀(男女) 아동(兒童)의 전(全) 연령(年齡)을 통(通)한 1차(次) 및 2차(次) 조사(調査)의 1일(日) 1인당(人當) 평균(平均) 식품(食品) 섭취(攝取) 상태(狀態)는 다음과 같다. 1) 양구지역(楊口地域)의 아동(兒童)의 총(總) 식품(食品) 섭취량(攝取量)은 $508.1g{\sim}647.1g$ 범위(範圍)로서 이중(中) 식물성식품(植物性食品) 및 동물성식품(動物性食品)의 섭취비율(攝取比率)은 각각(各各) $83.0{\sim}91.3%$% 및 $5.5{\sim}11.7%$범위(範圍) 이었다. 2) 여주지역(麗州地域) 아동(兒童)의 총식품(總食品) 섭취량(攝取量)은 $586.6g{\sim}697.9g$ 범위(範圍)로서 이중(中) 식물성식품(植物性食品) 및 동물성식품(動物性食品)의 섭취비율(攝取比率)은 각각(各各) $88.2{\sim}89.0%$$6.3{\sim}7.6%$ 범위(範圍) 이었다. 2. 영양소(營養素) 섭취(攝取) 상태(狀態) 각(各) 지역별(地域別) 남녀(男女) 아동(兒童)의 전(全) 연령(年齡)을 통(通)한 1차(次) 및 2차(次) 조사(調査)의 1일(日) 1인당(人當) 평균(平均) 각(各) 영양소(營養素)의 섭취(攝取) 상태(狀態)는 다음과 같다. 1) 열량(熱量) 섭취량(攝取量)은 권장량 1500 kcal에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $1120{\sim}1415kcal$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $1407{\sim}1556kcal$ 범위(範國)이었다. 2) 단백질(蛋白質) 섭취량(攝取量)은 권장량 45g 에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $33.1{\sim}42.6g$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $35.5{\sim}42.6g$ 범위(範圍)이었다. 그러나 이들 단백질(蛋白質) 섭취량중(攝取量中) $5.5{\sim}11.7%$만이 동물성(動物性) 단백질(蛋白質) 이였다. 3) 지방(脂肪) 섭취량(攝取量)은 권장량 20g 에 비(比)하며 양구지역(楊口地域) 아동(兒童)이 $13.9{\sim}24.3g$ 범위(範圍)이었고 여주지역(麗州池域) 아동(兒童)이 $10.4{\sim}12.1g$ 범위(範圍)이었다. 4) 당질(糖質) 섭취량(攝取量)은 양구(楊口) 및 여주지역아동(麗州地域兒童) 각각(各各) 총열량(總熱量) 섭취량(攝取量) 의 $70.6{\sim}83.8%$ 범위(範圍)를 차지 하였다. 5) 칼슘 섭취량(攝取量)은 권장량 500 mg 에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $282.4{\sim}355.0mg$이었고 여주지역(麗州地域) 아동(兒童)이 $284.6{\sim}429.0mg$ 이었다. 6) 철(鐵) 섭취량(攝取量)은 권장량 10mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $6.0{\sim}12.1mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $6.4{\sim}16.7mg$ 범위(範圍)로 상당수의 아동(兒童)이 권장량에 미달(未達) 되었다. 7) 비터민 A 섭취량(攝取量)은 양구지역(楊口地域)이 $703.4{\sim}1495.6\;IU$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $750.5{\sim}1521.2\;IU$ 범위(範圍)로서 ${\beta}-carotene$으로서의 권장량 5100 I.U,에 비(比)하여 매우 부족되었다. 8) 비타민 $B_1$ 섭취량(攝取量)은 권장량 0.8mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $0.6{\sim}0.8mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $1.0{\sim}1.3mg$ 범위(範圍)이었다. 9) 비타민 $B_2$ 섭취량(攝取量) 0.9mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $0.4{\sim}0.7mg$ 범위(範圍) 이었고 여주지역(麗州地域) 아동(兒童)이 $0.8{\sim}1.0mg$ 범위(範圍)이었다. 10) 비타민 C 섭취량(攝取量)은 권장량 40mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $17.6{\sim}37.0mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $43.3{\sim}58.0mg$ 범위(範圍)이었다. 11) 나이아신 섭취량(攝取量)은 권장량 10mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $9.3{\sim}15.2mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $10.8{\sim}16.9mg$ 범위(範圍)이었다. 3. 체위(體位) 1) 신장(身長) : 양구지역(楊口地域) 남자아동(男子兒童)은 4세(歲) 및 5세(歲)에서 표준치(標準値)보다 다소(多少) 작았고 6세(歲)는 컸는데 여자아동(女子兒童)은 각(各) 연령별(年齡別) 모두 표준치(標準値) 보다컸다. 이에 비(比)하여 여주지역(麗州地域) 남자아동(男子兒童)은 각(各) 연령별(年齡別) 표준치(標準値)에 비(比)하여 컸으나 여자아동(女子兒童)은 5세(歲)에 다소(多少) 작았다. 2) 체중(體重) : 양구지역(楊口地域) 남자아동(男子兒童)은 4세(歲) 및 5세(歲)에서 표준치(標準値)보다 다소(多少) 미달(未達) 되었으나 6세(歲)는 높았는데 여자아동(女子兒童)은 각(各) 연령별(年齡別) 모두 표준치(標準値)와 비슷하였다. 이에 비(比)하며 여주지역(麗州地域) 남자(男子) 아동(兒童)은 각(各) 연령별(年齡別) 표준치(標準値)와 비슷 하거나 다소(多少) 높았으나 여자(女子) 아동(兒童)은 다소(多少) 낮았다. 3) 상완위(上腕圍) : 남녀(男女) 아동(兒童)의 전(全) 연령(年齡)을 통(通)하여 1차(次) 및 2차조사(次調査) 성적(成績)은 양구지역(楊口地域) 아동(兒童)이 $15.1cm{\sim}16.8cm$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $15.6cm{\sim}16.6cm$ 범위(範圍) 이었다. 4) 흉위(胸圍) : 양구지역(楊口地域) 남녀(男子) 아동(兒童)은 각(各) 연령별(年齡別) 표준치(標準催)와 큰 차이(差異) 없었는데 여자(女子) 아동(兒童)은 다소(多少) 낮았다. 5) 좌고(座高) : 남자(男子) 아동(兒童)의 전(全) 연령(年齡)을 통(通)하여 양구지역(楊口地域) 아동(兒童)은 $54.2cm{\sim}61.8cm$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)은 $54.8cm{\sim}61.1cm$ 범위(範圍)이었다. 4. 임상증상(臨床症狀) 1) 양구지역(楊口地域) : 남자(男子) 아동(兒童)은 구각염이 약(約) 30% 충치가 약(約) 20%이었으며 여자(女子) 아동(兒童)은 전(全) 대상자(對象者) 31명중(名中) 1명(名)이 갑상선 비대 이었고 구각염이 약(約) 10%, 충치가 약(約) 20%이었다. 2) 여주지역(麗州地域) : 남자(男子) 아동(兒童)도 구각염이 약(約) 20%, 충치가 약(約) 22%이었으며 여자(女子) 아동(兒童)은 구각염이 약(約) 47%, 충치가 약(約) 20%이었다. 5. 생화학적(生化學的) 검사(檢査) 상태(狀態) 1) Hemoglabin 함량(含量)은 양구(楊口) 및 여주지역(麗州地域)의 전(全) 연령별(年齡別)을 통(通)하여 남자(男子) 아동(兒童)은 $11.0g{\sim}11.6g%$ 범위(範圍)이었고 여자(女子) 아동(兒童)은 $10.3g{\sim}11.5g%$ 범위(範圍)이었다. 2) 빈혈해당치(貧血該當値)를 WHO 가 정(定)한 l1g/100ml 이하(以下)로 보았을때 양구지역(楊口地域)의 남자아동(男子兒童)은 $16.7%{\sim}26.7%$, 여자아동(女子兒童) $33.3{\sim}50.0%$ 및 여주지역(麗州地域)의 남자(男子) 아동(兒童)은 33.3%, 여자(女子) 아동(兒童)은 $73.3%{\sim}100.0%$가 빈혈해당자(貧血該當者)에 속했다. 그러나 빈혈(貧血)의 정도(程度)는 심(深)한 경우는 거의 없고 거의 대부분(大部分)이 경(輕)한 빈혈(貧血)임이 특이(特異)하였다. 3) Hematocrit 치(値)는 전(全) 대상자(對象者)를 통(通)하며 $39.9%{\sim}41.6%$ 범위(範圍)이었다. 4) 혈장단백질(血奬蛋白質) 함량(含量)은 전(全) 대상자(對象者)를 통(通)하여 평균(平均) $6.6{\sim}7.4%$ 범위(範圍)이었는데 ICNND의 결핍해당치(缺乏該當値) 6.0g% 이하(以下)에는 양구지역(楊口地域) 4세(歲) 여자아동(女子兒童) 1명(名) 뿐이었다. 6. 기생충 상태(狀態) 1) 양구지역(楊口地域) : 남자아동(男子兒童)은 회충이 약(約) 62%, 편충이 약(約) 62%이었고 여자(女子) 아동(兒童)은 회충이 약(約) 73%, 편충이 약(約) 60%가 충란이 검출(檢出)되었다.

  • PDF

논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I) (Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice)

  • 류한열;김철기
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF