• 제목/요약/키워드: hysteretic systems

검색결과 158건 처리시간 0.026초

Diagonal bracing of steel frames with multi-cable arrangements

  • Husem, Metin;Demir, Serhat;Park, Hong G.;Cosgun, Suleyman I.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1121-1137
    • /
    • 2016
  • A large number of structure in the world were build with poor seismic details, with or without any lateral load resisting system like concentrically braced frames and steel plate shear walls. These structures can reveal deteriorating hysteretic behaviors with stiffness and strength degradation. Therefore, seismic retrofitting of such structures for drift control has vital importance. In this study a retrofit methodology has been developed, which involves diagonal bracing of steel frames with different cable arrangements. In the experimental and numerical program 5 different lateral load resisting system were tested and results compared with each other. The results indicated that multi-cable arrangements suggested in this study showed stable ductile behavior without any sudden decrease in strength. Due to the usage of more than one diagonal cable, fracture of any cable did not significantly affect the overall strength and deformation capacity of the system. In cable braced systems damages concentrated in the boundary zones of the cables and beams. That is why boundary zone must have enough stiffness and strength to resist tension field action of cables.

Shape memory alloy-based smart RC bridges: overview of state-of-the-art

  • Alam, M.S.;Nehdi, M.;Youssef, M.A.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.367-389
    • /
    • 2008
  • Shape Memory Alloys (SMAs) are unique materials with a paramount potential for various applications in bridges. The novelty of this material lies in its ability to undergo large deformations and return to its undeformed shape through stress removal (superelasticity) or heating (shape memory effect). In particular, Ni-Ti alloys have distinct thermomechanical properties including superelasticity, shape memory effect, and hysteretic damping. SMA along with sensing devices can be effectively used to construct smart Reinforced Concrete (RC) bridges that can detect and repair damage, and adapt to changes in the loading conditions. SMA can also be used to retrofit existing deficient bridges. This includes the use of external post-tensioning, dampers, isolators and/or restrainers. This paper critically examines the fundamental characteristics of SMA and available sensing devices emphasizing the factors that control their properties. Existing SMA models are discussed and the application of one of the models to analyze a bridge pier is presented. SMA applications in the construction of smart bridge structures are discussed. Future trends and methods to achieve smart bridges are also proposed.

Modelling aspects of the seismic response of steel concentric braced frames

  • D'Aniello, M.;La Manna Ambrosino, G.;Portioli, F.;Landolfo, R.
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.539-566
    • /
    • 2013
  • This paper summarises the results of a numerical study on the non linear response of steel concentric braced frames under monotonic and cyclic loads, using force-based finite elements with section fibre discretisation. The first part of the study is addressed to analyse the single brace response. A parametric analysis was carried out and discussed to evaluate the accuracy of the model, examining the influence of the initial camber, the material modelling, the type of force-based element, the number of integration points and the number of fibers. The second part of the paper is concerned with the modelling issues of whole braced structures. The effectiveness of the modelling approach is verified against the nonlinear static and dynamic behaviour of different type of bracing configurations. The model sensitivity to brace-to-brace interaction and the capability of the model to mimic the response of complex bracing systems is analyzed. The influence of different approaches for modelling the inertia, the equivalent viscous damping and the brace hysteretic response on the overall structural response are also investigated. Finally, on the basis of the performed numerical study general modelling recommendations are proposed.

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Identification of plastic deformations and parameters of nonlinear single-bay frames

  • Au, Francis T.K.;Yan, Z.H.
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.315-326
    • /
    • 2018
  • This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.

에너지 흡수효율에 의한 구조물간 내진 성능 비교 (Comparative Seismic Evaluation of Structures by Energy Absorption Efficiency)

  • 김장훈
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.37-43
    • /
    • 2001
  • 다양한 구조시스템간 반복하중에 대한 거동 성능을 비교하고자 에너지 개념을 확장하였다. 이로부터 에너지 흡수효율이 정의되었는데 이는 구조체의 누적에너지 흡수능력을 기준이 되는 탄성-완전소성시스템의 누적에너지 흠수량으로 나누어 무차원화한 것이다. 이를 위하여 반복하중실험으로부터 구한 실험결과들을 정리하여 에너지곡선의 형태로 표현하여야 한다. 제안된 방법을 이용하여 기하학적으로, 재료적으로 또한 구법이 서로 상이한 구조체간의 내진 성능에 대한 상대적이며 객관적인 비교가 가능해진다. 또한 이 방법의 가장 큰 장점 중의 하나는 구조물의 파괴형태와 관계없이 반복하중에 의한 힘-변위 관계만 주어지면 충분하다는 것이다. 제안된 방법을 두 시험체의 실험결과에 적용하여 그 타당성을 입증하여 보았다.

  • PDF

Experimental and numerical study on innovative seismic T-Resisting Frame (TRF)

  • Ashtari, Payam;Sedigh, Helia Barzegar;Hamedi, Farzaneh
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.251-269
    • /
    • 2016
  • In common structural systems, there are some limitations to provide adequate lateral stiffness, high ductility, and architectural openings simultaneously. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to improve the performance of structures. In this study, Configuration of TRF is a Vertical I-shaped Plate Girder (V.P.G) which is placed in the middle of the span and connected to side columns by two Horizontal Plate Girders (H.P.Gs) at each story level. System performance is improved by utilizing rigid connections in link beams (H.P.Gs). Plastic deformation leads to tension field action in H.P.Gs and causes energy dissipation in TRF; therefore, V.P.G. High plastic deformation in web of TRF's members affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF's members and improve overall performance of the system, appropriate criteria for placement of web stiffeners are presented in this study. In addition, an experimental study is conducted by applying cyclic loading and using finite element models. As a result, hysteresis curves indicate adequate lateral stiffness, stable hysteretic behavior, and high ductility factor of 6.73.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Preisach 모델을 이용한 수직자기기록장치의 재생특성 해석 (Analysis of Reproducing Characteristics in Perpendicular Magnetic Recording System Using Preisach Model)

  • 박관수;이향범;이택동;장평우
    • 한국자기학회지
    • /
    • 제2권1호
    • /
    • pp.50-55
    • /
    • 1992
  • 히스테리시스 특성을 갖는 자기기록장치의 재생과정을 수치모사할 수 있는 방법을 구현 하였다. 수치해거시 기록과정뿐만 아니라 재생과정에서도 히스테리시스 특성을 고려해 주어야 한다. 수치해석기법으로 유한요소법(finite element metho)을 사용하고 히스테리시스 특성을 묘사하기 위 하여 spin curling 모드를 이용한 Stoner-Wohlfarth 모델보다 정밀한 해석이 가능한 Preisach 모델 을 사용하여 알고리즘을 구성한 후 재생전압을 구하기 위한 수식을 유도하고 이 것을 2층매체와 폴 형헤드를 갖는 수직자기 기록장치에 적용하였다. 정보가 기록된 매체위를 헤드가 지나갈 때 코일을 통과하는 자속밀도와 코일에 유기되는 재생전압의 크기가 포화되는 특성을 구함으로써 이것으로부 터 기록과정에서 헤드에 흘려줄 최적의 전류를 구하였다.

  • PDF

Uncertainty quantification for structural health monitoring applications

  • Nasr, Dana E.;Slika, Wael G.;Saad, George A.
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.399-411
    • /
    • 2018
  • The difficulty in modeling complex nonlinear structures lies in the presence of significant sources of uncertainties mainly attributed to sudden changes in the structure's behavior caused by regular aging factors or extreme events. Quantifying these uncertainties and accurately representing them within the complex mathematical framework of Structural Health Monitoring (SHM) are significantly essential for system identification and damage detection purposes. This study highlights the importance of uncertainty quantification in SHM frameworks, and presents a comparative analysis between intrusive and non-intrusive techniques in quantifying uncertainties for SHM purposes through two different variations of the Kalman Filter (KF) method, the Ensemble Kalman filter (EnKF) and the Polynomial Chaos Kalman Filter (PCKF). The comparative analysis is based on a numerical example that consists of a four degrees-of-freedom (DOF) system, comprising Bouc-Wen hysteretic behavior and subjected to El-Centro earthquake excitation. The comparison is based on the ability of each technique to quantify the different sources of uncertainty for SHM purposes and to accurately approximate the system state and parameters when compared to the true state with the least computational burden. While the results show that both filters are able to locate the damage in space and time and to accurately estimate the system responses and unknown parameters, the computational cost of PCKF is shown to be less than that of EnKF for a similar level of numerical accuracy.