• 제목/요약/키워드: hysteretic systems

검색결과 156건 처리시간 0.022초

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

A methodology to estimate earthquake induced worst failure probability of inelastic systems

  • Akbas, Bulent;Nadar, Mustafa;Shen, Jay
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.187-201
    • /
    • 2008
  • Earthquake induced hysteretic energy demand for a structure can be used as a limiting value of a certain performance level in seismic design of structures. In cases where it is larger than the hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of earthquake induced worst failure probability and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously published cyclic test data on full-scale steel beam-to-column connections. The failure probability corresponding to the worst possible case is determined based on the hysteretic energy demand and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure probability decreases dramatically. If this ratio is too small, then the failure is inevitable.

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

ENTA이력댐퍼의 실험과 유한 요소 해석을 통한 내진 성능 검증 (Experiment of ENTA Hysteretic Damper and Verification of Seismic Performance Through Finite Element Analysis)

  • 이홍석;황정현;이기학
    • 한국공간구조학회논문집
    • /
    • 제20권1호
    • /
    • pp.79-86
    • /
    • 2020
  • The performance enhancement of various damping systems from natural hazards has become an highly important issue in engineering field. In this paper, ENTA hysteretic dampers were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. The test results showed that the hysteretic dampers are effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings. Also, the hysteretic dampers were modeled in FEM(Finite Element Method) structural analysis program. As comparing the computer modeling and the experiment, this study model reflects the nonlinear behavior of steel and derives the hysteresis loop.

비탄성 응답스펙트럼에 대한 완만한 곡선형 이력거동의 영향 (Effect of Smooth Hysteretic Behavior for Inelastic Response Spectra)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2010
  • 실제 구조요소나 구조시스템의 비선형응답은 단순화된 형태의 분할선형 이력모델 보다는 완만한 곡선이력모델로 나타내는 것이 보다 정확하다. 본 논문에서는 완만한 곡선이력거동을 적용한 일정연성도 비탄성 응답스펙트럼을 작성하는 방법을 제시하였다. 가속도, 변위 및 입력에너지에 대한 비탄성 응답스펙트럼에 대한 곡선형이력거동의 완만한 정도의 영향을 평가하였다. 해석결과로부터 곡선형이력거동의 완만도가 증가할수록 비탄성 응답스펙트럼은 감소하는 경향을 나타냄을 알 수 있었다.

Nonlinear stochastic optimal control strategy of hysteretic structures

  • Li, Jie;Peng, Yong-Bo;Chen, Jian-Bing
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.39-63
    • /
    • 2011
  • Referring to the formulation of physical stochastic optimal control of structures and the scheme of optimal polynomial control, a nonlinear stochastic optimal control strategy is developed for a class of structural systems with hysteretic behaviors in the present paper. This control strategy provides an amenable approach to the classical stochastic optimal control strategies, bypasses the dilemma involved in It$\hat{o}$-type stochastic differential equations and is applicable to the dynamical systems driven by practical non-stationary and non-white random excitations, such as earthquake ground motions, strong winds and sea waves. The newly developed generalized optimal control policy is integrated in the nonlinear stochastic optimal control scheme so as to logically distribute the controllers and design their parameters associated with control gains. For illustrative purposes, the stochastic optimal controls of two base-excited multi-degree-of-freedom structural systems with hysteretic behavior in Clough bilinear model and Bouc-Wen differential model, respectively, are investigated. Numerical results reveal that a linear control with the 1st-order controller suffices even for the hysteretic structural systems when a control criterion in exceedance probability performance function for designing the weighting matrices is employed. This is practically meaningful due to the nonlinear controllers which may be associated with dynamical instabilities being saved. It is also noted that using the generalized optimal control policy, the maximum control effectiveness with the few number of control devices can be achieved, allowing for a desirable structural performance. It is remarked, meanwhile, that the response process and energy-dissipation behavior of the hysteretic structures are controlled to a certain extent.

E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답 (A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper)

  • 황인호;주민관;심종성;이종세
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.685-690
    • /
    • 2008
  • 최근 대규모의 지진피해로 인해 내진설계에 대한 관심이 높아지면서, LRB(Lead Rubber Bearing), FPS(Friction Pendulum System) 등 다양한 지진격리장치에 대한 연구가 진행되고 있다. 본 연구에서 E-Shape 강재이력댐퍼를 이용한 지진격리장치의 성능 평가를 위해 E-Shape 댐퍼의 동적거동 실험을 수행하였으며, 이를 바탕으로 해석적 연구를 위한 수치모델을 제안하였다. 또한, 제안된 E-Shape 강재이력댐퍼의 수치모델을 6자유도를 가진 5층 건물에 적용하여 LRB 시스템과 이력거동을 비교하여 지진격리성능 평가를 수행하였다. 본 연구를 통하여 제안된 수치모델은 실제 E-Shape 강재이력댐퍼의 동적거동을 적절히 묘사할 수 있으며, E-Shape 강재이력댐퍼는 비선형 거동을 통한 에너지를 적절히 소산시킴으로서 기존 시스템과 비교하여 충분히 지진격리성능을 발휘할 수 있을 것으로 사료된다.

Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform and effective eigenvalues

  • Bae, S.H.;Jeong, W.B.;Cho, J.R.;Lee, J.H.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.263-272
    • /
    • 2017
  • This paper presents the time response of a mixed vibration system with the viscous damping and the hysteretic damping. There are two ways to derive the time response of such a vibration system. One is an analytical method, using the contour integral of complex functions to compute the inverse Fourier transforms. The other is an approximate method in which the analytic functions derived by Hilbert transform are expressed in the state space representation, and only the effective eigenvalues are used to efficiently compute the transient response. The unit impulse responses of the two methods are compared and the change in the damping properties which depend on the viscous and hysteretic damping values is investigated. The results showed that the damping properties of a mixed damping vibration system do not present themselves as a linear combination of damping properties.

다층 구조물과 등가 단자유도계의 에너지 요구량 비교 (Comparison of Energy Demand in Multi-Story Structures and Equivalent SDOF Systems)

  • 최현훈;원영섭;김진구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.19-26
    • /
    • 2003
  • In energy-based design, the structures are generally transformed into equivalent SDOF systems to obtain the input and the dissipated energy. In this study the energy demands in multi-story structures were compared with that of equivalent single degree of freedom systems to validate the transformation method. Three-, eight-, and twenty-story steel moment-resisting frames and buckling restrained braced frames are compared with those of equivalent single degree of freedom systems. Sixty earthquake ground motions recorded in different soil conditions were used to compute the input and hysteretic energy demands in model structures. According to the analysis results, in 3 and 8-story structures the hysteretic energy demands computed in the equivalent SDOF structures are compatible with those computed in the original MDOF structures, while in the 20-story structures the transformed equivalent structures underestimated the hysteretic energy demands.

  • PDF

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.