• Title/Summary/Keyword: hysteretic energy

Search Result 353, Processing Time 0.021 seconds

A methodology to estimate earthquake induced worst failure probability of inelastic systems

  • Akbas, Bulent;Nadar, Mustafa;Shen, Jay
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.187-201
    • /
    • 2008
  • Earthquake induced hysteretic energy demand for a structure can be used as a limiting value of a certain performance level in seismic design of structures. In cases where it is larger than the hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of earthquake induced worst failure probability and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously published cyclic test data on full-scale steel beam-to-column connections. The failure probability corresponding to the worst possible case is determined based on the hysteretic energy demand and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure probability decreases dramatically. If this ratio is too small, then the failure is inevitable.

A simplified normalized cumulative hysteretic energy spectrum

  • Sun, Guohua;Gu, Qiang;Fang, Youzhen
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • For energy-based seismic design, a simplified normalized cumulative hysteretic energy spectrum proposed for obtaining hysteretic energy as energy demand is the main objective in this paper. The dimensionless parameter, ${\beta}_{Eh}$, is presented to express hysteretic energy indirectly. The ${\beta}_{Eh}$ spectrum is constructed directly through subtracting the hysteretic energy of single degree-of-freedom (SDOF) system energy equation. The simplified ${\beta}_{Eh}$ spectral formulation as well as pseudo-acceleration spectrum of modern seismic provisions is developed based on the regression analysis of the large number of seismic responses of SDOF system subjected to earthquake excitations, which considers the influence of earthquake event, soil type, damping ratio, and ductility factor. The relationship between PGV and PGA is established according to the statistical analysis relied on a total of 422 ground motion records. The combination of ${\beta}_{Eh}$ spectrum and PGV/PGA equation allows determining the cumulative hysteretic energy as a main aseismic design indicator.

Identifying the hysteretic energy demand and distribution in regular steel frames

  • Akbas, Bulent;Shen, Jay;Temiz, Hakan
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.479-491
    • /
    • 2006
  • Structures in seismic regions are designed to dissipate seismic energy input through inelastic deformations. Structural or component failure occurs when the hysteretic energy demand for a structure or component subject to an earthquake ground motion (EQGM) exceeds its hysteretic energy dissipation capacity. This paper presents a study on identifying the hysteretic energy demand and distribution throughout the height of regular steel moment resisting frames (SMRFs) subject to severe EQGMs. For this purpose, non-linear dynamic time history (NDTH) analyses were carried out on regular low-, medium-, and high-rise steel SMRFs. An ensemble of ninety EQGMs recorded on different soil types was used in the study. The results show that the hysteretic energy demand decreases from the bottom stories to the upper stories and for high-rise structures, most of the hysteretic energy is dissipated by the bottom stories. The decrease is quite significant, especially, for medium- and high-rise structures.

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

A neural network model to assess the hysteretic energy demand in steel moment resisting frames

  • Akbas, Bulent
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.177-193
    • /
    • 2006
  • Determining the hysteretic energy demand and dissipation capacity and level of damage of the structure to a predefined earthquake ground motion is a highly non-linear problem and is one of the questions involved in predicting the structure's response for low-performance levels (life safe, near collapse, collapse) in performance-based earthquake resistant design. Neural Network (NN) analysis offers an alternative approach for investigation of non-linear relationships in engineering problems. The results of NN yield a more realistic and accurate prediction. A NN model can help the engineer to predict the seismic performance of the structure and to design the structural elements, even when there is not adequate information at the early stages of the design process. The principal aim of this study is to develop and test multi-layered feedforward NNs trained with the back-propagation algorithm to model the non-linear relationship between the structural and ground motion parameters and the hysteretic energy demand in steel moment resisting frames. The approach adapted in this study was shown to be capable of providing accurate estimates of hysteretic energy demand by using the six design parameters.

Energy-based seismic design of structures with buckling-restrained braces

  • Kim, Jinkoo;Choi, Hyunhoon;Chung, Lan
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.437-452
    • /
    • 2004
  • A simplified seismic design procedure for steel structures with buckling-restrained braces (BRB) was proposed based on the energy balance concept and the equal energy assumption. The input seismic energy was estimated from a design spectrum, and the elastic and hysteretic energy were computed using energy balance concept. The size of braces was determined so that the hysteretic energy demand was equal to the hysteretic energy dissipated by the BRB. The validity of using equivalent single-degree-of-freedom systems to estimate seismic input and hysteretic energy demand in multi story structures with BRB was investigated through time-history analysis. The story-wise distribution pattern of hysteretic energy demands was also obtained and was applied in the design process. According to analysis results, the maximum displacements of the 3-story structure designed in accordance with the proposed procedure generally coincided with the target displacements on the conservative side. The maximum displacements of the 6- and 8-story structures, however, turned out to be somewhat smaller than the target values due to the participation of higher vibration modes.

Reduction of the Seismetic rRspocses by Using the Modified Hysteretic Bi-Linear Model of the Seismic Isolator (수정히스테리틱 Bi-Linear 면진베어린 모델을 사용한 지진응답감소)

  • Koo, G.H.;Lee, J.H.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.127-134
    • /
    • 1996
  • In general, seismic isolators which are made of laminated rubber and shim plate have characteristics of complex hysteretic behavior. When shear deformation of the seismic isolator is small, the isolator hassimple hysteretic almost bi-linear behabior. But on large shear deformation hardening effects may occur. This paper proposes a moldeling method of the seimic isolator with modified hysteretic bi-linear model which can consider the hardening effects. From the results of the seismic analyses of the isolated system it is shown that the responses are singificantly reduced compared with those of the non-isolated system. The modified hysteretic bi-linear model of the isolator gives larger ZPA(zero period acceleration) than those of the simple hysteretic bi-linear model and the equivalunt spring-damper model.

Energy-Based Hysteretic Models for R/C Members (에너지 소산능력에 기초한 철근콘크리트 부재의 이력모델)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.45-54
    • /
    • 2004
  • Since existing hysteretic models for R/C members focused on presenting the degrading stiffness using empirical equations based on experiments, they cannot accurately predict the energy dissipation capacity during cyclic loading. Recently, design equations which can evaluate the energy dissipation capacity of R/C members were developed. Based on those equations, in the present study, an energy-based hysteretic model for flexure-dominated R/C members was developed. The proposed model was devised to dissipate the same energy as the actual one dissipated during a complete load cycle. The proposed model represents the hysteretic behaviors of R/C members accompanied by stiffness degradation and pinching using primary and cyclic curves and six unloading/reloading rules. The proposed model was verified by comparisons with various experimental results. The energy-based hysteretic model can be used to develop computer programs for static and dynamic analysis/design because it is simple and easily applicable to numerical analysis.

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Prediction of hysteretic energy demands in steel frames using vector-valued IMs

  • Bojorquez, Eden;Astorga, Laura;Reyes-Salazar, Alfredo;Teran-Gilmore, Amador;Velazquez, Juan;Bojorquez, Juan;Rivera, Luz
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.697-711
    • /
    • 2015
  • It is well known the importance of considering hysteretic energy demands for the seismic assessment and design of structures. In such a way that it is necessary to establish new parameters of the earthquake ground motion potential able to predict energy demands in structures. In this paper, several alternative vector-valued ground motion intensity measures (IMs) are used to estimate hysteretic energy demands in steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure Sa($T_1$) as first component. As the second component, IMs related to peak, integral and spectral shape parameters are selected. The aim of the study is to provide new parameters or vector-valued ground motion intensities with the capacity of predicting energy demands in structures. It is concluded that spectral-shape-based vector-valued IMs have the best relation with hysteretic energy demands in steel frames subjected to narrow-band earthquake ground motions.