• Title/Summary/Keyword: hysteretic characteristics

Search Result 203, Processing Time 0.026 seconds

An Analysis of Seismic Response of High - Rise Building with Mid-Story Isolation System According to Change of Characteristics of the Seismic Isolation Device (중간층 면진시스템이 적용된 고층건물의 면진장치 특성변화에 따른 지진응답분석)

  • Kang, Joo-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.149-156
    • /
    • 2019
  • In this study, dynamic responses of high - rise buildings were analyzed through the change of horizontal stiffness and yield strength among characteristics of seismic isolation system by applying middle - layer seismic isolation system to high - rise buildings of 120m height. As a result in order to prevent the displacement of the isolation layer and to control the maximum torsion angle, it is possible to appropriately control by increasing or decreasing the horizontal stiffness and the yield strength. However, depending on the maximum torsional angle and the hysteretic behavior of the seismic isolation system, excessive yield strength and horizontal stiffness increase may induce the elastic behavior of the structure and amplify the response. Therefore, it is considered that it is necessary to select the property value of the appropriate isolation device.

Characteristics of Ferroelectric Transistors with $BaMgF_4$ Dielectric

  • Lyu, Jong-Son;Jeong, Jin-Woo;Kim, Kwang-Ho;Kim, Bo-Woo;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.20 no.2
    • /
    • pp.241-249
    • /
    • 1998
  • The structure and electrical characteristics of metal-ferroelectric-semiconductor FET(MFSFET) for a single transistor memory are presented. The MFSFET was comprised of polysilicon islands as source/drain electrodes and $BaMgF_4$ film as a gate dielectric. The polysilicon source and drain were built-up prior to the formation of the ferroelectric film to suppress a degradation of the film due to high thermal cycles. From the MFS capacitor, the remnant polarization and coercive field were measured to be about $0.6{\mu}C/cm^2$ and 100 kV/cm, respectively. The fabricated MFSFETs also showed good hysteretic I-V curves, while the current levels disperse probably due to film cracking or bad adhesion between the film and the Al electrode.

  • PDF

Present State of Self-Rectifying Air Turbines for Wave Energy Conversion

  • Setoguchi, Toshiaki;Takao, Manabu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.3-12
    • /
    • 2003
  • This paper reviews the present state of the art on the self-rectifying air turbines, which could be used for wave energy conversion. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been evaluated numerically and compared from the viewpoints of the starting and running characteristics. The types of turbine included in the paper are as follows: (a) Wells turbine with guide vanes (WTGV); (b) turbine with self-pitch-controlled blades (TSCB); (c) biplane Wells turbine with guide vanes (BWGV); (d) impulse turbine with self-pitch-controlled guide vanes (ISGV) and (e) impulse turbine with fixed guide vanes (IFGV). As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, the authors have explained the mechanism of hysteretic behavior of the Wells turbine and the necessity of links for improvement of the performance of ISGV.

  • PDF

Thermomechanical and electrical resistance characteristics of superfine NiTi shape memory alloy wires

  • Qian, Hui;Yang, Boheng;Ren, Yonglin;Wang, Rende
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.183-193
    • /
    • 2022
  • Structural health monitoring and structural vibration control are multidisciplinary and frontier research directions of civil engineering. As intelligent materials that integrate sensing and actuation capabilities, shape memory alloys (SMAs) exhibit multiple excellent characteristics, such as shape memory effect, superelasticity, corrosion resistance, fatigue resistance, and high energy density. Moreover, SMAs possess excellent resistance sensing properties and large deformation ability. Superfine NiTi SMA wires have potential applications in structural health monitoring and micro-drive system. In this study, the mechanical properties and electrical resistance sensing characteristics of superfine NiTi SMA wires were experimentally investigated. The mechanical parameters such as residual strain, hysteretic energy, secant stiffness, and equivalent damping ratio were analyzed at different training strain amplitudes and numbers of loading-unloading cycles. The results demonstrate that the detwinning process shortened with increasing training amplitude, while austenitic mechanical properties were not affected. In addition, superfine SMA wires showed good strain-resistance linear correlation, and the loading rate had little effect on their mechanical properties and electrical resistance sensing characteristics. This study aims to provide an experimental basis for the application of superfine SMA wires in engineering.

Performance Experiments and Analysis of Nonlinear Behavior for HDRB using in Seismic Isolation (면진용 고감쇠 적층고무베어링의 성능 특성 실험 및 비선형 거동해석)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.73-86
    • /
    • 1998
  • The purpose of this paper is to evaluate the shear stiffness, hysteretic behavior, and ultimate behavior of HDRB(High Damping Rubber Bearing), which will be included in the seismic isolation design guideline as requirements. To do this, two 1/8 scaled HDRB are designed, fabricated, and tested to show the mechanical characteristics. The shear stiffness obtained from the proposed equation of the shear stiffness shows a good agreement with those of the experiments. For analysis of the hysteretic behavior of HDRB using the modified rate model, the parameter equations are obtained from the experiments. Using the obtained parameter equations for the modified rate model, the seismic response analyses are carried out for 1-D system. The results of analysis well follow the hysteretic behavior of HDRB obtained from the experiments. To evaluate the ultimate behavior of HDRB used in this paper, the analyses are carried out using the modified macro model, which can consider the large shear deflection. The critical shear strain(CSS) is defined to express the maximum allowable shear strain and vertical load. From the analyses, the CSS, showing the instability, decreases significantly as increased the vertical loads. The CSS is not appeared for the design vertical load in the used HDRB. In analysis using about 5 times of design vertical load, the HDRB start to show the instability transient and for about 7 times, the CSS is about 350%.

  • PDF

Seismic vibration control of an innovative self-centering damper using confined SMA core

  • Qiu, Canxing;Gong, Zhaohui;Peng, Changle;Li, Han
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.241-254
    • /
    • 2020
  • Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.

An Analytical Study on Hysteresis Behavior of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(Eco-girder)의 이력거동에 대한 수치해석적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2010
  • The end-reinforced composite-beam (eco-girder) system was developed that has characteristics of the existing composite beams such as reduced floor height and increased strength. With it, less use of steel is expected. In the eco-girder system, only both ends of the steel-frame beam, which are vulnerable to the ultimate moment, are reinforced with steel plates so that the steel frame beam design will be based on the moment at the beam center. This study used fiber element analysis, which is a simple representation and numerical integration of the principles of the detailed Finite Element Method(FEM), to predict the hysteretic behavior of reinforced composite beams under cyclic loading. The validity of the numerical method was verified by comparing the results of this study with those of previous studies. In addition, the hysteretic behavior of the eco-girder was compared with that of the existing composite beams.

Dissipation of energy in steel frames with PR connections

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.241-256
    • /
    • 2000
  • The major sources of energy dissipation in steel frames with partially restrained (PR) connections are evaluated. Available experimental results are used to verify the mathematical model used in this study. The verified model is then used to quantify the energy dissipation in PR connections due to hysteretic behavior, due to viscous damping and at plastic hinges if they are formed. Observations are made for two load conditions: a sinusoidal load applied at the top of the frame, and a sinusoidal ground acceleration applied at the base of the frame representing a seismic loading condition. This analytical study confirms the general behavior, observed during experimental investigations, that PR connections reduce the overall stiffness of frames, but add a major source of energy dissipation. As the connections become stiffer, the contribution of PR connections in dissipating energy becomes less significant. A connection with a T ratio (representing its stiffness) of at least 0.9 should not be considered as fully restrained as is commonly assumed, since the energy dissipation characteristics are different. The flexibility of PR connections alters the fundamental frequency of the frame. Depending on the situation, it may bring the frame closer to or further from the resonance condition. If the frame approaches the resonance condition, the effect of damping is expected to be very important. However, if the frame moves away from the resonance condition, the energy dissipation at the PR connections is expected to be significant with an increase in the deformation of the frame, particularly for low damping values. For low damping values, the dissipation of energy at plastic hinges is comparable to that due to viscous damping, and increases as the frame approaches failure. For the range of parameters considered in this study, the energy dissipations at the PR connections and at the plastic hinges are of the same order of magnitude. The study quantitatively confirms the general observations made in experimental investigations for steel frames with PR connections; however, proper consideration of the stiffness of PR connections and other dynamic properties is essential in predicting the dynamic behavior.

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

EVALUATION OF SEISMIC SHEAR CAPACITY OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, JUNHEE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.756-765
    • /
    • 2015
  • Background: Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. Methods: The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. Results: The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ~40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. Conclusion: The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.