• Title/Summary/Keyword: hypoxia

Search Result 808, Processing Time 0.029 seconds

Upregulation of HIF-1α by Hypoxia Protect Neuroblastoma Cells from Apoptosis by Promoting Survivin Expression

  • Zhang, Bo;Yin, Cui-Ping;Zhao, Qian;Yue, Shou-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8251-8257
    • /
    • 2014
  • Apoptosis is one of main types of neural cell death and is reversible and is a major target of therapeutic interventions. However, detailed apoptotic cascades still need to be recognized. In present study, we determined the promotion of HIF-$1{\alpha}$ and survivin in brain samples of a mouse model of hypoxic-ischemia and in neuroblastoma SH-SY5Y cells post hypoxia treatment. Then gain-of-function and loss-of-function strategies were adopted to manipulate the HIF-$1{\alpha}$ in SH-SY5Y cells, and hypoxia-induced survivin upregulation and cell apoptosis were determined. Results demonstrated that the HIF-$1{\alpha}$ and survivin were significantly promoted in a mouse model of hypoxic-ischemia or in SH-SY5Y cells post hypoxia in vitro. Manually upregulated HIF-$1{\alpha}$ could promote the hypoxia-induced survivin upregulation and improve the hypoxia-induced SH-SY5Y cell apoptosis. On the other hand, the HIF-$1{\alpha}$ knockdown by RNAi reduced the hypoxia-induced survivin upregulation and cell apoptosis. Therefore, the present study confirmed the protective role of HIF-$1{\alpha}$ and survivin in the hypoxia-induced SH-SY5Y cell apoptosis, and the survivin upregulation by hypoxia is HIF-$1{\alpha}$-dependent. Promotion of HIF-$1{\alpha}$ and survivin might be a valuable stragegy for therapeutic intervention for hypoxic-ischemic encephalopathy.

Effect of Hypoxia on Carbohydrate Metabolism in Barley Seedlings (저산소 조건이 보리 유묘의 탄수화물대사에 미치는 영향)

  • Choi Heh Ran;Park Myoung Ryoul;Kim Jung Gon;Namkoong Seung Bak;Choi Kyeong-Gu;Yun Song Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.170-174
    • /
    • 2005
  • Barley plants growing in the wet paddy field easily encounter suboptimal oxygen concentration in the rhizosphere that causes molecular oxygen deficiency in root cells. The capacity of root cells to utilize energy sources is known to be positively related to resistance to hypoxia stress. This study was conducted to investigate effects of hypoxia on enzymes involved in the starch and sucrose metabolism. Barley seedlings at the third leaf stage were subjected to hypoxia (1 ppm dissolved oxygen) by purging the culture solution with nitrogen gas for up to seven days. The protein content was slightly decreased by hypoxia for 7 days. $\alpha-Amylase$ activities increased significantly in the root but not in the shoot after 3 to 7 days of hypoxia. $\beta-Amylase$ activities were not affected significantly in both tissues. Additionally, sucrose synthase activities were affected little in both tissues by 7 days of hypoxia. The results indicate that root cells activate break­down of polysaccharide reserves in response to an acute hypoxia to supply energy sources for fermentative glycolysis and cell wall fortification.

Differential Embryo Development among Tibetan Chicken, DRW and Shouguang Chicken Exposed to Chronic Hypoxia

  • Li, Mei;Zhao, Chun-Jiang;Wu, Chang-Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.336-342
    • /
    • 2009
  • Avian embryos at high altitude are independent of maternal protection against hypoxia, which is contrary to mammals. It is well known that chronic hypoxic exposure at key points can significantly impact on avian development. Tibetan Chicken, a Chinese indigenous breed, living in Tibetan areas with an altitude of 2.2 to 4.1 thousand meters, has an adaptive mechanism to hypoxia. In the present study, fertilized eggs of Tibetan Chicken were incubated under 13% and 21% oxygen concentration. Two lowland chicken breeds, Shouguang Chicken, an indigenous chicken breed in Shandong Province of China, and Dwarf Recessive White Chicken, an imported breed in Beijing, were used as control groups. The embryo mass and some organs such as brain, heart, liver, stomach and eye weight in the three species were measured at Hamburger-Hamilton stage 39, 41, 43 and 45 under hypoxic and normal conditions. The results showed that in hypoxia Tibetan Chicken significantly differed from the two lowland chicken breeds in embryo mass at Hamburger-Hamilton stage 41, 43 and 45 (p<0.01). In particular, Dwarf Recessive White Chicken and Shouguang Chicken showed retarded growth in hypoxic incubation (p<0.01), whereas Tibetan Chicken showed no significant difference between hypoxic and normal conditions (p>0.05). In addition, heart and the other organs showed different susceptibility to hypoxia at the studied stages. In conclusion, chronic hypoxia induced a change in the embryo development of the three different species and Tibetan Chicken showed adaptation to hypoxia. Of note, the embryo developmental physiology of Tibetan Chicken in response to hypoxia will shed light on the process of physiological acclimation or evolutionary adaptation as well as the study of clinical disease.

Physiological Stress Responses in Black Seabream Acanthopagrus schlegelii Subjected to Acute Hypoxia (저산소 노출에 따른 감성돔(Acanthopagrus schlegelii)의 생리학적 스트레스 반응)

  • Min, Byung Hwa;Park, Mi Seon;Myeong, Jeong-In;Hwang, Hyung Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.819-826
    • /
    • 2013
  • The black seabream Acanthopagrus schlegelii is an important species for aquaculture in Korea. There are, however, no reports on the physiological responses to hypoxia in this species. The objective of this study was to evaluate the effects of acute hypoxia on the physiological stress responses (plasma cortisol as the primary response, and plasma glucose, hematocrit (Ht), hemoglobin (Hb), sodium, chloride, osmolality, AST, ALT and total protein as the secondary responses) of the fish. The experimental fish were exposed to 0.5 ppm dissolved oxygen (DO) in the seawater via two methods (progressive stepwise decline (Exp. I), and direct decline (Exp. II)). A highly significant increase was detected in plasma cortisol levels due to the hypoxia treatments, and fish in Exp. I had hormone levels that were significantly higher than the fish in Exp. II. For plasma glucose, there was no significant difference between the Exp. I fish and the control fish, whereas Exp. II fish showed significantly higher plasma glucose levels than Exp. I fish and control fish. Ht values increased in both hypoxia treatments; however, Hb concentrations increased only in Exp. I. Although plasma chloride levels were unaffected by acute hypoxia, plasma sodium and osmolality levels increased in Exp. I. Progressive hypoxia (Exp. I fish) increased plasma AST, ALT and total protein. These results suggest that the value and direction of changes to the investigated parameters can be used to determine the resistance of black seabream to acute hypoxia.

Endothelial Cell Products as a Key Player in Hypoxia-Induced Nerve Cell Injury after Stroke

  • Cho, Chul-Min;Ha, Se-Un;Bae, Hae-Rahn;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • Objective : Activated endothelial cells mediate the cascade of reactions in response to hypoxia for adaptation to the stress. It has been suggested that hypoxia, by itself, without reperfusion, can activate the endothelial cells and initiate complex responses. In this study, we investigated whether hypoxia-induced endothelial products alter the endothelial permeability and have a direct cytotoxic effect on nerve cells. Methods : Hypoxic condition of primary human umbilical vein endothelial cells[HUVEC] was induced by $CoCl_2$ treatment in culture medium. Cell growth was evaluated by 3,4,5-dimethyl thiazole-3,5-diphenyl tetrazolium bromide [MTT] assay Hypoxia-induced products [$IL-1{\beta},\;TGF-{\beta}1,\;IFN-{\gamma},\;TNF-{\alpha}$, IL-10, IL-6, IL-8, MCP-l and VEGF] were assessed by enzyme-linked immunosorbent assay. Endothelial permeability was evaluated by Western blotting. Results : Prolonged hypoxia caused endothelial cells to secrete IL -6, IL -8, MCP-1 and VEGF. However, the levels of IL -1, IL -10, $TNF-{\alpha},\;TGF-{\beta},\;IFN-{\gamma}$ and nitric oxide remained unchanged over 48 h hypoxia. Hypoxic exposure to endothelial cells induced the time-dependent down regulation of the expression of cadherin and catenin protein. The conditioned medium taken from hypoxic HUVECs had the cytotoxic effect selectively on neuroblastoma cells, but not on astroglioma cells. Conclusion : These results suggest the possibility that endothelial cell derived cytokines or other secreted products with the increased endothelial permeability might directly contribute to nerve cell injury followed by hypoxia.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF

Hypoxia Induced Multidrug Resistance of Laryngeal Cancer Cells via Hypoxia-inducible Factor-1α

  • Li, Da-Wei;Dong, Pin;Wang, Fei;Chen, Xin-Wei;Xu, Cheng-Zhi;Zhou, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4853-4858
    • /
    • 2013
  • Objectives: To investigate whether hypoxia has an effect on regulation of multidrug resistance (MDR) to chemotherapeutic drugs in laryngeal carcinoma cells and explore the role of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Methods: Laryngeal cancer cells were cultured under normoxic and hypoxic conditions. The sensitivity of the cells to multiple drugs and levels of apoptosis induced by paclitaxel were determined by MTT assay and annexin-V/propidium iodide staining analysis, respectively. HIF-$1{\alpha}$ expression was blocked by RNA interference. The expression of HIF-$1{\alpha}$ gene was detected by real-time quantitative RT-PCR and Western blotting. The value of fluorescence intensity of intracellular adriamycin accumulation and retention in cells was evaluated by flow cytometry. Results: The sensitivity to multiple chemotherapy agents and induction of apoptosis by paclitaxel could be reduced by hypoxia (P<0.05). A the same time, the adriamycin releasing index of cells was increased (P<0.05). However, resistance acquisition subject to hypoxia in vitro was suppressed by down-regulating HIF-$1{\alpha}$ expression. Conclusion: HIF-$1{\alpha}$ could be considered as a key regulator for mediating hypoxia-induced MDR in laryngeal cancer cells via inhibition of drug-induced apoptosis and decrease in intracellular drug accumulation.

Hypoxia Inducible Factor-1α Directly Induces the Expression of Receptor Activator of Nuclear Factor-κB Ligand in Chondrocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell-derived essential factor for osteoclastogenesis. During endochondral bone formation, hypertrophic chondrocytes calcify cartilage matrix that is subsequently resorbed by osteoclasts in order to be replaced by new bone. Hypoxia-induced upregulation of RANKL expression has been previously demonstrated in an in vitro system using osteoblasts; however, the involved mechanism remains unclear in chondrocytes. In the present study, we investigated whether hypoxia regulates RANKL expression in ATDC5 cells, a murine chondrogenic cell line, and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) mediates hypoxia-induced RANKL expression by transactivating the RANKL promoter. The expression levels of RANKL mRNA and protein, as well as HIF-$1{\alpha}$ protein, were significantly increased in ATDC5 cells under hypoxic condition. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ reduced hypoxia-induced RANKL expression. HIF-$1{\alpha}$ increased RANKL promoter reporter activity in a HIF-$1{\alpha}$ binding element-dependent manner in ATDC5 cells. Hypoxia-induced RANKL levels were much higher in differentiated ATDC5 cells, as compared to proliferating ATDC5 cells. These results suggested that under hypoxic conditions, HIF-$1{\alpha}$ mediates induction of RANKL expression in chondrocytes; in addition, hypoxia plays a role in osteoclastogenesis during endochondral bone formation, at least in part, through the induction of RANKL expression in hypertrophic chondrocytes.

Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11

  • Seong, Minhyeong;Kang, Hara
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.206-211
    • /
    • 2020
  • Vascular smooth muscle cells (VSMCs) are a unique cell type that has unusual plasticity controlled by environmental stimuli. As an abnormal increase of VSMC proliferation is associated with various vascular diseases, tight regulation of VSMC phenotypes is essential for maintaining vascular homeostasis. Hypoxia is one environmental stress that stimulates VSMC proliferation. Emerging evidence has indicated that microRNAs (miRNAs) are critical regulators in the hypoxic responses of VSMCs. Therefore, we previously investigated miRNAs modulated by hypoxia in VSMCs and found that miR-1260b is one of the most upregulated miRNAs under hypoxia. However, the mechanism that underlies the regulation of VSMCs via miR-1260b in response to hypoxia has not been explored. Here we demonstrated that hypoxia-induced miR-1260b promotes VSMC proliferation. We also identified growth differentiation factor 11 (GDF11), a member of the TGF-β superfamily, as a novel target of miR-1260b. miR-1260b directly targets the 3'UTR of GDF11. Downregulation of GDF11 inhibited Smad signaling and consequently enhanced the proliferation of VSMCs. Our findings suggest that miR-1260b-mediated GDF11-Smad-dependent signaling is an essential regulatory mechanism in the proliferation of VSMCs, and this axis is modulated by hypoxia to promote abnormal VSMC proliferation. Therefore, our study unveils a novel function of miR-1260b in the pathological proliferation of VSMCs under hypoxia.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.