• Title/Summary/Keyword: hypothetical accident conditions

Search Result 26, Processing Time 0.031 seconds

Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC

  • Sun, Hongping;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.937-946
    • /
    • 2020
  • The aim in the present work is to simulate accident scenarios of AP1000 during the small-break loss-of-coolant accident (SBLOCA) and investigate the performance and behavior of automatic depressurization system (ADS) during accidents by using MIDAC (The Module In-vessel Degradation severe accident Analysis Code). Four types of accidents with different hypothetical conditions were analyzed in this study. The impact on the thermal-hydraulic of the reactor coolant system (RCS), the passive core cooling system and core degradation was researched by comparing these types. The results show that the RCS depressurization becomes faster, the core makeup tanks (CMT) and accumulators (ACC) are activated earlier and the effect of gravity water injection is more obvious along with more ADS valves open. The open of the only ADS1-3 can't stop the core degradation on the basis of the first type of the accident. The open of ADS1-3 has a great impact on the injection time of ACC and CMT. The core can remain intact for a long time and the core degradation can be prevent by the open of ADS-4. The all results are significant and meaningful to understand the performance and behavior of the ADS during the typical SBLOCA.

Analysis of Accident and Measurement Costs Resulting from Incidents in Retaining Walls (가시설 벽체 사고에 따른 복구비용 및 계측비용 분석)

  • Dong-Gun Lee;Ji-Yeol Choi;Jeong-Yeon Yu;Ki-Il Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2023
  • Ensuring the stability of visible structures during excavation works are extremely crucial. While the stability of the ground is analyzed through numerical calculations the during design phase, the conditions during construction often differ. Therefore, it is imperative to analyze the stability of the wall through measurements. The cost of measurements on the construction site is set at a very low unit price, which increases the risk of accidents involving retaining walls. In this study, we argue for the importance of automated or wireless system measurements of retaining walls, by estimating construction duration and accident costs through the analysis of hypothetical accident cases, and comparing these with measurement costs. In case of a major destruction during excavation work, the accident handling cost could be less than 5% of the total measurement budget. Therefore, increasing the measurement budget to prevent accidents in advance can be economically beneficial.

Study on Core Debris Recriticality During Hypothetical Severe Accidents in Three Element Core Design of The Advanced Neutron Source Reactor

  • Shin, Sung-Tack
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.467-472
    • /
    • 1996
  • This study discusses special aspects of severe accident related recriticality modeling and analysis in the Advanced Neutron Source (ANS) reactor.$^{1, 2)}$ The analytical comparison of three elements core to former two elements case is conducted including evaluation of suitable nuclear cross-section sets to account for the effects of system configulation, fuel and moderator mixture temperature, material dispersion and the other thermal-hydraulics. Three elements core ANS reactor is the alternative core design which was proposed as a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium (former uranium fuel is the baseline design value of 93%) A comprehensive test matrix of calculations to evaluate the threat of a criticality event in the ANS is described. Strong dependencies still on geometry, material constituents, and thermal-hydraulic conditions are verified. Therefore, the concepts of mitigative design features are qualified.d.

  • PDF

A Study on the free drop impact analysis of the impact limiter for radioactive material transportation cask (방사성물질 운반용기 완충체의 자유낙하 충격 거동에 관한 연구)

  • 박홍윤;신동필;서기석;정성환;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.98-102
    • /
    • 2002
  • As the nuclear power plant has been operated continuously and increased gradually, transportation and storage of spent fuel are seriously considered nowadays. The transportation cask which contains radioactive material needs to be inspected about structural safety. About safety verification, description of IAEA Safety Standards states that cask must withstand hypothetical accident conditions. In this paper, 9m free drop impact analysis was performed for transportation cask and impact limiter by using the finite element methods. Furthermore, we obtained the dynamic behavior of wood to as compared with safety test results, and verified the safety of transportation cask.

  • PDF

Structural Evaluation on the Impact of a Radioisotope Package

  • Chung, Sung-Hwan;Lee, Heung-Young;Ku, Jeong-Hoe;Seo, Ki-Seog;Han, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.462-469
    • /
    • 1998
  • A package to transport high-level radioactive materials is required to withstand normal transport and hypothetical accident conditions pursuant to the IAEA and domestic regulations. The package should maintain the structural safety not to release radioactive material in any condition. The structural safety of the package has been evaluated by tests using proto-type or scaled-down models, however, the method by analysis is gradually utilized due to recent advancement of computers and computer codes. In this paper, to evaluate the structural safety of a radioisotope package of the KAERI, the three dimensional impact analyses under 9m free drop and 1m puncture were performed with an explicit finite-element code, the LS-DYNA3D code. The maximum stress intensity on each part was calculated and the structural safety of the package was evaluated in accordance with the regulations.

  • PDF

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

ASSESSMENT OF CONDENSATION HEAT TRANSFER MODEL TO EVALUATE PERFORMANCE OF THE PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Cho, Yun-Je;Kim, Seok;Bae, Byoung-Uhn;Park, Yusun;Kang, Kyoung-Ho;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.759-766
    • /
    • 2013
  • As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for 3rd-generation (GEN-III) nuclear power plants that are driven by passive systems. The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the Advanced Power Reactor Plus (APR+), and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. The heat removal capability of the PAFS is strongly dependent on the heat transfer at the condensate tube in Passive Condensation Heat Exchanger (PCHX). To evaluate the model of heat transfer coefficient for condensation, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used to simulate the experimental results from PAFS Condensing Heat Removal Assessment Loop (PASCAL). The Shah model, a default model for condensation heat transfer coefficient in the MARS code, under-predicts the experimental data from the PASCAL. To improve the calculation result, The Thome model and the new version of the Shah model are implemented and compared with the experimental data.

Shielding Design of Shipping Cask for 4 PWR Spent Fuel Assemblies (PWR집합체 4개 장전용 수송용기의 차폐설계)

  • Kang, Hee-Yung;Yoon, Jung-Hyoun;Seo, Ki-Seog;Ro, Seung-Gy;Park, Byung-Il
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.65-70
    • /
    • 1988
  • A Shielding analysis of the shipping cask designed conceptually, of which shielding material are lead and resin, for containing 4 PWR spent fuel assemblies, has been made with the help of a computer code, ANISN. The shielding materials being used in the cask have been selected and arranged to minimize cask weight while maintaining an overall shielding effectiveness. Radiation source terms have been calculated by means of ORIGIN-2 code under the assumptions of 38,000 MWD/MTU burnup and 3-year cooling time. A calculation of gamma-ray and neutron dose rates on the cask surface and 1m from the surface has been done. It is revealed that the total dose rates under the normal transport and hypothetical accident conditions meet the standards specified.

  • PDF

Size Optimization of Impact Limiter in Radioactive Material Transportation Package Based on Material Dynamic Characteristics (재료동특성에 기초한 방사성물질 운반용기 충격완충체의 치수최적설계)

  • Choi, Woo-Seok;Nam, Kyoung-O;Seo, Ki-Seog
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • According to IAEA regulations, a transportation package of radioactive material should perform its intended function of containing the radioactive contents after the drop test, which is one of hypothetical accident conditions. Impact limiters attached to a transport cask absorb the most of impact energy. So, it is appreciated to determine properly the shape, size and material of impact limiters. A material data needed in this determination is a dynamic one. In this study, several materials considered as those of impact limiters were tested by a drop weight facility to acquire dynamic material characteristics data. Impact absorbing volume of the impact limiter was derived mathematically for each drop condition. A size optimization of impact limiter was conducted. The derived impact absorbing volumes were applied as constraints. These volumes should be less than critical volumes generated based on the dynamic material characteristics. The derived procedure to decide the shape of impact limiter can be useful at the preliminary design stage when the transportation package's outline is roughly determined and applied as input value.

  • PDF

CHARACTERISTICS OF SELF-LEVELING BEHAVIOR OF DEBRIS BEDS IN A SERIES OF EXPERIMENTS

  • Cheng, Songbai;Yamano, Hidemasa;Suzuki, TYohru;Tobita, Yoshiharu;Nakamura, Yuya;Zhang, Bin;Matsumoto, Tatsuya;Morita, Koji
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.323-334
    • /
    • 2013
  • During a hypothetical core-disruptive accident (CDA) in a sodium-cooled fast reactor (SFR), degraded core materials can form roughly conically-shaped debris beds over the core-support structure and/or in the lower inlet plenum of the reactor vessel from rapid quenching and fragmentation of the core material pool. However, coolant boiling may ultimately lead to leveling of the debris bed, which is crucial to the relocation of the molten core and heat-removal capability of the debris bed. To clarify the mechanisms underlying this self-leveling behavior, a large number of experiments were performed within a variety of conditions in recent years, under the constructive collaboration between the Japan Atomic Energy Agency (JAEA) and Kyushu University (Japan). The present contribution synthesizes and gives detailed comparative analyses of those experiments. Effects of various experimental parameters that may have potential influence on the leveling process, such as boiling mode, particle size, particle density, particle shape, bubbling rate, water depth and column geometry, were investigated, thus giving a large palette of favorable data for the better understanding of CDAs, and improved verifications of computer models developed in advanced fast reactor safety analysis codes.