• 제목/요약/키워드: hypothetical accident conditions

검색결과 26건 처리시간 0.019초

Containment Evaluation of the KN-12 Transport Cask

  • Chung, Sung-Hwan;Choi, Byung-Il;Lee, Heung-Young;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • 제28권4호
    • /
    • pp.291-298
    • /
    • 2003
  • The KN-12 transport cask has been designed to transport 12 PWR spent nuclear fuel assemblies and to comply with the regulatory requirements for a Type B(U) package. The containment boundary of the cask is defined by a cask body, a cask lid, lid bolts with nuts, O-ring seals and a bolted closure lid. The containment vessel for the cask consists of a forged thick-walled carbon steel cylindrical body with an integrally-welded carbon steel bottom and is closed by a lid made of stainless steel, which is fastened to the cask body by lid bolts with nuts and sealed by double elastomer O-rings. In the cask lid an opening is closed by a plug with an O-ring seal and covered by the bolted closure lid sealed with an O-ring. The cask must maintain a radioactivity release rate of not more than the regulatory limit for normal transport conditions and for hypothetical accident conditions, as required by the related regulations. The containment requirements of the cask are satisfied by maintaining a maximum air reference leak rate of $2.7{\times}10^{-4}ref.cm^3s^{-1}$ or a helium leak rate of $3.3{\times}10^{-4}cm^3s^{-1}$ for normal transport conditions and for hypothetical accident conditions.

Evaluation of the KN-12 Spent Fuel Transport Cask by Analysis

  • Chung, Sung-Hwan;Lee, Heung-Young;Song, Myung-Jae;Rudolf Diersch;Reiner Laug
    • Nuclear Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.187-201
    • /
    • 2002
  • The KN-12 cask is designed to transport 12 PWR spent nuclear fuels and to comply with the requirements of Korea Atomic Energy Act, IAEA Safety Standards Series No.57-1 and US 10 CFR Part 71 for a Type B(U)F package. It provides containment, radiation shielding, structural integrity, criticality control and heat removal for normal transport and hypothetical accident conditions. W.H 14$\times$14, 16$\times$16 and 17$\times$17 fuel assemblies with maximum allowable initial enrichment of 5.0 wt.%, maximum average burn-up of 50,000 MWD/MTU and minimum cooling time of 7 years being used in Korea will be loaded and subsequently transported under dry and wet conditions. A forged cylindrical cask body which constitutes the containment vessel is closed by a cask lid. Polyethylene rods for neutron shielding are arranged in two rows of longitudinal bore holes in the cask body wall. A fuel basket to accommodate up to 12 PWR fuel assemblies provides support of the fuels, control of criticality and a path to dissipate heat. Impact limiters to absorb the impact energy under the hypothetical accident conditions are attacked at the top and at the bottom side of the cask during transport. Handling weight loaded with water is 74.8 tons and transport weight loaded with water with the impact limiters is 84.3 tons. The cask will be licensed in accordance with Korea Atomic Energy Act 3nd fabricated in Korea in accordance with ASME B&PV Code Section 111, Division 3.

자유낙하충격조건에 있는 사용후핵연료 운반용기의 충격해석방법 연구 (Analysis Method on the Free Drop Impact Condition of Spent Nuclear Fuel Shipping Casks)

  • 이재형;이영신;류충현;나재연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.766-771
    • /
    • 2001
  • The package used to transport radioactive materials, which is called by cask, must be safe under normal and hypothetical accident conditions. These requirements for the cask design must be verified through test or finite element analysis. Since the cost for FE analysis is less than one for test. the verification by FE analysis is mainly used. But due to the complexity of mechanical behaviors. the results depends on how users apply the codes and it can cause severe errors during analysis. In this paper, finite element analysis is carried out for the 9 meters free drop and the puncture condition of the hypothetical accident conditions using LS-DYNA3D and ABAQUS/Explicit. We have investigated the analyzing technique for the free drop impact test of the cask and found several vulnerable cases to errors. The analyzed results were compared with each other. We have suggested a reliable and relatively simple analysis technique for the drop test of spent nuclear fuel casks.

  • PDF

방사성 동위원소 운반용기의 안전성 평가 (Safety Evaluation of a Radioisotope Transport Package)

  • 이주찬;구정회;서기석;민덕기
    • Journal of Radiation Protection and Research
    • /
    • 제22권4호
    • /
    • pp.251-261
    • /
    • 1997
  • 방사성 동위원소 등의 고준위 방사성물질을 운반하기 위한 운반용기는 국내외의 관련법규에 따라 정상수송은 물론 가상사고조건에서도 방사성물질의 누설이 발생되지 않도록 방사선차폐, 열 및 구조적 건전성이 유지되어야 한다. 운반용기의 건전성 평가는 시험모델을 이용한 시험적 방법과 전산해석 코드를 이용한 해석적 방법에 의하여 이루어지고 있다. 본 논문에서는 원자력연구소의 하나로에서 생산되는 동위원소를 동위원소 생산시설까지 이송하기 위한 HTS (Hydraulic Transfer System) 방사성 동위원소 운반용기의 안전성을 평가하였다. 방사선차폐해석, 열해석 및 구조해석을 수행한 결과 동위원소 운반용기는 정상수송조건 뿐만 아니라 가상사고조건에서도 건전성이 유지되는 것으로 나타났다.

  • PDF

LS-DYNA3D 및 ABAQUS/Explicit Code를 이용한 사용후 핵연료 운반용기의 자유낙하 충격특성연구 (A Study on the Free Drop Impact Characteristics of Spent Nuclear Fuel Shipping Casks by LS-DYNA3D and ABAQUS/Explicit Code)

  • 최영진;김승중;김용재;이재형;이영신
    • 한국전산구조공학회논문집
    • /
    • 제18권1호
    • /
    • pp.43-49
    • /
    • 2005
  • 방사선물질을 수송하기 위한 용기는 가상 사고조건에서도 안전해야만 한다. 운반용기 설계요구조건은 실험 및 유한요소 해석을 통해 구조적 건전성을 확보하여야 한다. 최근에는 실험보다 유한요소해석을 이용한 방법이 상대적으로 비용이 적기 때문에 주로 사용된다. 그러나 기계적인 반응이 복잡하기 때문에 프로그램을 적용하는 사용자의 방법에 의해 결과가 결정되고 해석하는 동안 여러가지 문제를 발생시킬 수 있다. 본 논문에서, 유한요소해석은 LS-DYNA3D와 ABAQUS/Explicit을 이용하여 운반용기의 9m 자유낙하충격실험에 대한 해석기술과 여러가지 손상을 갖는 경우를 발견하기 위해 연구하였다. 운반용기의 각각의 경우를 비교하고 사용후 핵연료 운반용기의 낙하 실험에 대해서 신뢰할 수 있는 비교적 간단한 해석 기술을 제안하였다.

KSC-4 수송용기의 핵임계도 분석 (Criticality Analysis of KSC-4 Spent Fuel Shipping Cask)

  • 최병일;신희성;박종묵;노성기
    • Journal of Radiation Protection and Research
    • /
    • 제14권1호
    • /
    • pp.56-65
    • /
    • 1989
  • 가압 경수로형 사용후 핵연료 4개를 수송할 수 있는 KSC-4 수송 용기에 대한 핵임계도 분석을 KENO-IV 전산 코드와 AMPX 전산 코드계로 부터 생산한 19군 핵단면적 자료를 써서 수행하였다. 핵임계도 계산은 10CFR71에서 제시한 기준에 따라 보수적인 계산을 위해 수송 용기내에 사용후 핵연료 대신 신핵연료로 가정하여 정상 수송 조건 및 가상 사고 조건에 대해 수행하였다. 그 결과, 핵임계도는 정상 수송 조건 및 가상 사고 조건시에 각각 0.85289 및 0.94185이었다. 따라서 KSC-4 수송 용기의 핵임계도는 10CFR71에서 규정하고 있는 미임계 요건을 만족하고 있다.

  • PDF

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • 방사성폐기물학회지
    • /
    • 제19권3호
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

내충격성을 고려한 사용후연료 수송용기 내부구조물의 설계 연구 (Study on the Impact-proof Internal Structure Design of a Spent Nuclear Fuel Transport Cask)

  • 신태명;김갑순
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.370-377
    • /
    • 2009
  • A simple preliminary analysis is often useful to check a validity of design alternatives before the detailed analysis phase in the viewpoint of efficiency. This paper describes a preliminary analysis procedure for the selection among basket design candidates for the spent fuel shipping cask of Korean standard nuclear power plant. As the cask should maintain the structural integrity in hypothetical accident condition, the case of 9 m drop is significantly considered as the worst scenario among the accident conditions in structural design viewpoint in this paper. As basket design options, totally four different types are considered and analyzed in the point of structural integrity at drop impact and weldability for fabrication. As a result, an insertion round plate type with densely spaced supports turns out to be the best in both of the viewpoints, though the weld plate type shows a bit more design margin.

중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석 (Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code)

  • 유선오;이경원;백경록;김만웅
    • 한국압력기기공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.