• Title/Summary/Keyword: hypocentral distance

Search Result 13, Processing Time 0.032 seconds

A study of $Q_{Lg}^{-1}$ by the reversed two station method in the crust of central South Korea (Reversed Two Station Method (RSTM)에 의한 중부지방 $Q_{Lg}^{-1}$ 연구)

  • Cheong, Tae-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.211-218
    • /
    • 2002
  • The reversed two station method (RSTM) devised by Chun et al. (1987) is widely used to obtain $Q_{Lg}^{-1}$ for Lg wave data with hypocentral distance greater than 90 km. By applying RSTM to the Lg data of central South Korea with hypocentral distance between 95 and 381 km, we obtained high $Q_{Lg}^{-1}$. The value of $Q_{Lg}^{-1}$ is very similar with that of southeastern S. Korea, which is derived from the same method for similar distances. The studied hypocentral range seems to distort $Q_{Lg}^{-1}$ to high value because decay rate in this range is higher than 0.5, which is typical decay rate of surface wave.

  • PDF

The ML scale in southern Korea (한반도 남부 지진의 지역 규모식)

  • 홍태경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.73-80
    • /
    • 2000
  • The distance correction term -logA0 of the local magnitude scale was estimated for earthquakes in southern Korea using linear least-squares inversion and interpolation scheme. Total 1054 short-period velocity seismograms from 107 local events recorded at hypocentral distances ranging from 10 to 480 km were used in this study. Simulated Wood-Anderson amplitudes were obtained from velocity seismograms with use of revised Wood-Anderson instrument response with static magnification 2080, damping factor 0.7, and natural period 0.8 sec. The estimated distance correction term for southern Korea is found to be -logA0=1.137 log(r/17) + 0.001159(r-17) + 20, where r is hypocentral distance in kilometers. The attenuation rate of this distance correction term falls between those of southern California and eastern North America.

  • PDF

Nonparametric Ground-Motion Evaluation of Shear-Wave Fourier Spectra (비매개변수법에 의한 주파수별 스펙트럼감쇠 평가)

  • 연관희;박동희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.20-27
    • /
    • 2003
  • The nonparametric method was employed to obtain detailed broadband attenuation characteristics of horizontal Fourier spectra without generally assigned constraint that derived path terms be zeros at a reference distance. Instead, path terms fer a reference distance were obtained based on the physical phenomenon that the seismic phase is stable over the hypocentral distance range from 200km to 400km so that the Q-values evaluated at several distances inside that region should be the same. The inverted path terms show three distinct linear regions roughly divided by hypocentral distances at 65km and 115km. Also complex behavior at the near distance range below 100km was revealed which can not be properly fitted by combination of single $Q_{0}$ $f^{η}$ model and any geometrical spreading models.s.

  • PDF

The Duration and H/V ratio of the Ground Motion in Southern Korea (남한 지진의 지속시간과 H/V 비율)

  • 최호선;박창업;조남대
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.42-50
    • /
    • 2002
  • The duration and H/V ratio(the amplitude ratio of the horizontal to vertical components) of ground motions caused by earthquakes in southern Korea are analyzed. Total 329 seismograms of horizontal component recorded at hypocentral distances of 10 to 350 km from 27 earthquakes with local magnitude 2 to 4 are used for the analysis. Simplified relation between the duration of ground motion( $T_{d}$) and the ratio($\chi$) of Arias intensity( $I_{A}$) and squared maximum acceleration($\alpha$$_{max}$$^{2}$) is determined to be $T_{d}$ = 3.423$\chi$$^2$+ 8.200$\chi$ + 0.029, which is useful for the estimation of the duration in southern Korea. There are three distinct distance ranges with different linear variations of the duration in hypocentral distance. They are distance intervals of 10~80km, 80~140km, and the distance greater than 140km. The duration in southern Korea shows clear proportionality to the local magnitude at magnitudes greater than 3.1. The value 1.37 of the H/V ratio obtained in southern Korea is similar to the value 1.4 of ENA(Eastern North America). The H/V ratio in southern Korea increases in the frequency range from 0.3 to 10Hz. The duration and H/V ratio of ground motions derived in this study could be used in the stochastic simulation of strong ground motion.ion.n.n.

  • PDF

Distance Dependency of Corner Frequencies for Earthquakes in and around the Korean Peninsula (한반도 및 주변지역 지진 모서리 주파수의 거리 종속성)

  • Shin, Jin Soo;Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.39-45
    • /
    • 2008
  • The source parameters of 85 events ($1.6\;{\leq}\;M_L\;{\leq}\;4.9$) that occurred in and around the Korean Peninsula during 2006 and 2007 were analyzed by an iterative spectral fitting procedure. The data set consists of 487 S-wave trains on three-component seismograms recorded at broadband seismograph stations in the southern part of the Korean Peninsula. Moment magnitudes for each event were determined using spectral analyses of the seismograms, and the results were compared with the variation in corner frequencies with hypocentral distance. Corner frequencies have a tendency to decrease with increases in hypocentral distance, and the decrease is smaller the larger the moment magnitude. We define the measured corner frequency on a displacement spectrum as the apparent corner frequency. Although it was reported that the distance dependency of the corner frequency was found in some regions, such as the eastern Canadian Shield and the Baltic Shield, the origin of the phenomenon is not certain yet.

Hypocentral Depth Determination of Gyeongju Earthquake Aftershock Sequence (경주 지진 여진의 진원 깊이 연구)

  • Chung, Tae Woong;Iqbal, Muhammad Zafar
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Hypocentral depths of 103 aftershocks of the 12 September 2016 Gyeongju earthquake (ML 5.8) were inverted by epicentral relocation, using HYPO71 and HYPOINVERSE. From the comparison of seven models that reflect regional velocity structure in the southern Korean Peninsula, HYPO71 with linear weighting over the whole range showed less residuals than HYPOINVERSE for the model near the epicenter. Less uncertainties of focal depths were observed for the events with large magnitude and short range of the closest S-phase distance.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

Stochastic Prediction of Strong Ground Motions in Southern Korea (추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • In order to estimate peak ground motions and frequency characteristics of strong ground motions in southern korea, we employed the stochastic simulation method with the moment magnitude(M$_{w}$) and the hypocentral distance(R). We estimated same input parameters that account for specific properties of source and propagation processes, and applied them to the stochastic simulation method. The stress drop($\Delta$$\sigma$) of 100-bar was estimated considering results of research in ENA, China, and southern korea. The attenuation parameter x was calculated by analyzing 57 seismograms recorded from September 1996 to October 1997 and the estimation result of the attenuation parameter x is 0.00112+0.000224 R where R is hypocenter distance. We estimated strong ground motion relations using the stochastic simulation method with suitable input parameters(e.g. $\Delta$$\sigma$, x, and so on). At last, we derived relations between hypocentral distances and ground motions(seismic attenuation equation) using results of the stochastic prediction.esults of the stochastic prediction.n.

  • PDF

Discrimination between Earthquakes and Explosions Recorded by the KSRS Seismic Array in Wonju, Korea (원주 KSRS 지진 관측망에 기록된 지진과 폭발 식별 연구)

  • Jeong, Seong Ju;Che, Il-Young;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.137-146
    • /
    • 2014
  • This study presents a procedure for discrimination of artificial events from earthquakes occurred in and around the Korean Peninsula using data set in the Wonju KSRS seismograph network, Korea. Two training sets representing natural and artificial earthquakes were constructed with 150 and 56 events, respectively, with high signal to noise ratio. A frequency band, Pg(4-6 Hz)/Lg(5-7 Hz), which is optimal for the discrimination of seismic sources was derived from the two-dimensional grid of Pg/Lg spectral amplitude ratio. The corrections for the effects of earthquake magnitude and hypocentral distance were carried out for improvement of discrimination capability. For correcting the effect of magnitude dependence due to the inverse proportionality of corner frequency to seismic moment, the Brune's source spectrum was subtracted from the observation spectrum. The spectrum was corrected using the optimal damping coefficient to remove damping effect with the hypocentral distance. The effect of locally varying spectrum ratio was cancelled correcting variation of wave propagation along the ray path. The performance in discrimination between training sets of natural and artificial events was compared using the Mahalanobis distance in each step of correction. The procedure of magnitude, distance, and path corrections show clear improvements of the discrimination results with increasing Mahalanobis distance, from 1.98 to 3.01, between two training sets.

Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake (2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.