• Title/Summary/Keyword: hypocenter parameter

Search Result 3, Processing Time 0.017 seconds

Stochastic Prediction of Strong Ground Motions in Southern Korea (추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • In order to estimate peak ground motions and frequency characteristics of strong ground motions in southern korea, we employed the stochastic simulation method with the moment magnitude(M$_{w}$) and the hypocentral distance(R). We estimated same input parameters that account for specific properties of source and propagation processes, and applied them to the stochastic simulation method. The stress drop($\Delta$$\sigma$) of 100-bar was estimated considering results of research in ENA, China, and southern korea. The attenuation parameter x was calculated by analyzing 57 seismograms recorded from September 1996 to October 1997 and the estimation result of the attenuation parameter x is 0.00112+0.000224 R where R is hypocenter distance. We estimated strong ground motion relations using the stochastic simulation method with suitable input parameters(e.g. $\Delta$$\sigma$, x, and so on). At last, we derived relations between hypocentral distances and ground motions(seismic attenuation equation) using results of the stochastic prediction.esults of the stochastic prediction.n.

  • PDF

Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method (추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향)

  • Kim, Jung-Han;Seo, Jeong-Moon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this study, the ground motion was synthesized using the finite fault model by the stochastic green function method, and the difference in the ground motions was evaluated by using various values of the source parameters. An earthquake with a moment magnitude of 6.5 was assumed for the example fault model. The distribution of the slip in the fault plane was calculated using the statistical data of the asperity area. The source parameters considered in this study were the location of the hypocenter in the fault plane and the ratio of the rupture to the shear wave velocity, the rise time, the corner frequency of the source spectrum, and a high frequency filter. The values of the parameters related to the stochastic element source model were adjusted for different tectonic regions, and the others were selected for several possible cases. The response spectra were constructed from the synthesized ground motion time history and compared with the different parameter values. The frequency range affected by each parameter and the differences of the spectral accelerations were evaluated.

Fast and Accurate Analyzing Technology for Earthquakes in the Seas around the Korean Peninsula Using Waveform Format Conversion and Composition (파형 변환.합성을 이용해서 한반도 주변 해역 지진 분석을 위한 신속 정확한 분석 기술)

  • Kim So-Gu;Pak Sang-Pyo
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.171-178
    • /
    • 2006
  • The seismological observation of Korea began in 1905, and has been run with continuous earthquake network of observation, expanding to the advanced country, but still has some problems in accuracy and speed for report. There are many problems to announce the early warning system for earthquakes and tsunami in the East Sea because most events in the East Sea occur outside the seismic network. Therefore multi-waveform data conversion and composition from the surrounding countries such as Korea, Japan and Far East Russia are requested in order to improve more accurate determination of the earthquake parameters. We used FESNET(Far East Seismic Network) technology to analyze the May 29 and June 1 Earthquakes, and the March 20, 2005 Fukuoka Earthquake in this research, using the data sets of KMA, Japan(JMA/MIED) and IRIS stations. It was found out that use of FESNET resulted in more better outputs than that of a single network, either KMA or JMA stations.