• Title/Summary/Keyword: hyperspectral radiance

Search Result 13, Processing Time 0.022 seconds

한반도 지표형태에 대한 MODIS TOA Radiance 분석

  • Lee, Sun-Gu;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.190-196
    • /
    • 2003
  • The top-of-atmosphere(TOA) radiance and its seasonal variation for various surface types have been analyzed using the MODIS direct broadcasting data acquired from the KARI ground station for the period between July 2002 and November 2003. The selected study areas considering the MODIS spatial resolution and the characteristics of the Korean peninsular are as follows: agricultural land, forest land, inland water, sea water, urban land, wetland, and atmosphere(cloud). The results showed that TOA radiances depend on the surface characteristics for the selected sample areas. Furthermore, the MODIS observations appear to well depict the general features of earth radiation properties. The authors hope that this study may provide the basic information on the analysis of hyperspectral data.

  • PDF

A Correction Approach to Bidirectional Effects of EO-1 Hyperion Data for Forest Classification

  • Park, Seung-Hwan;Kim, Choen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1470-1472
    • /
    • 2003
  • Hyperion, as hyperspectral data, is carried on NASA’s EO-1 satellite, can be used in more subtle discrimination on forest cover, with 224 band in 360 ?2580 nm (10nm interval). In this study, Hyperion image is used to investigate the effects of topography on the classification of forest cover, and to assess whether the topographic correction improves the discrimination of species units for practical forest mapping. A publicly available Digital Elevation Model (DEM), at a scale of 1:25,000, is used to model the radiance variation on forest, considering MSR(Mean Spectral Ratio) on antithesis aspects. Hyperion, as hyperspectral data, is corrected on a pixel-by-pixel basis to normalize the scene to a uniform solar illumination and viewing geometry. As a result, the approach on topographic effect normalization in hyperspectral data can effectively reduce the variation in detected radiance due to changes in forest illumination, progress the classification of forest cover.

  • PDF

Near-Infrared Spectral Characteristics in Presence of Sun Glint Using CASI-1500 Data in Shallow Waters

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.281-291
    • /
    • 2015
  • Sun glint correction methods of hyperspectral data that have been developed so far have not considered the various situations and are often adequate for only certain conditions. Also there is an inaccurate assumption that the signal in NIR wavelength is zero. Therefore, this study attempts to analyze the NIR spectral properties of sun glint effect in coastal waters. For the analysis, CASI-1500 airborne hyperspectral data, bathymetry data and in-situ data obtained at coastal area near Sin-Cheon, Jeju Island, South Korea were used. The spectral characteristics of radiance and reflectance at the five NIR wavelengths (744 nm, 758 nm, 772 nm, 786 nm, and 801 nm) are analyzed by using various statistics, spatial and spectral variation of sun-glinted area under conditions of the bottom types of benthos, barren rocks and sand with similar water depth. Through the quantitative analysis, we found that the relation of water depth or bottom type with sun glint is relatively less which is a similar result with the previous studies. However the sun glint are distributed similarly with the patterns of the direction of wave propagation. It is confirmed that the areas with changed direction of wave propagation were not affected by the sun glint. The spatial and spectral variations of radiance and reflectance are mainly caused by the effect of sun glint and waves. The radiance or reflectance of more sun-glinted areas are increased approximately 1.5 times and the standard deviations are also increased three times compared to the less sun glinted areas. Through this study, the further studies of sun glint correction method in coastal water using the patterns of wave propagation and diffraction will be placed.

Relative radiometric calibration for the SOC700 hyperspectral image with spectroradiometer (분광측정기를 이용한 초분광카메라 영상의 상대 복사보정)

  • Shin, Jung-Il;Maghsoudi, Yasser;Kang, Sung-Jin;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.69-73
    • /
    • 2008
  • 초분광영상을 이용한 정량적인 분석이나 분광라이브러리를 이용한 목표물의 탐지를 위해서는 복사보정이 필수적이지만 사전 검보정 자료가 없는 센서의 경우 절대 복사 보정을 실시할 수 없다. 본 연구의 목표는 사전 검보정 자료가 없는 지상 초분광 카메라 (SOC700) 영상의 화소값을 spectroradiometer의 radiance로 변환하기 위한 상대 변환계수(gain, offset coefficient)를 산출하고 그 적합성을 판단하는 것이다. 초분광영상의 DN과 동시에 측정된 radiance의 밴드별 선형 회귀분석을 통하여 상대 radiance 변환계수를 산출하였다. 산출된 선형 회귀식의 적합도($R^2$)는 대부분이 0.9 이상으로 매우 양호하였으며 상대 radiance를 이용할 경우 상대 분광반사율 획득이 가능하며 이를 통해 보다 초분광영상에 적합한 정량적인 분석을 할 수 있다.

  • PDF

Vicarious Radiometric Calibration of the Ground-based Hyperspectral Camera Image (지상 초분광카메라 영상의 복사보정)

  • Shin, Jung-Il;Maghsoudi, Yasser;Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.213-222
    • /
    • 2008
  • Although hyperspectral sensing data have shown great potential to derive various surface information that is not usually available from conventional multispectral image, the acquisition of proper hyperspectral image data are often limited. To use ground-based hyperspectral camera image for remote sensing studies, radiometric calibration should be prerequisite. The objective of this study is to develop radiometric calibration procedure to convert image digital number (DN) value to surface reflectance for the 120 bands ground-based hyperspectral camera. Hyperspectral image and spectral measurements were simultaneously obtained from the experimental target that includes 22 different surface materials of diverse spectral characteristics at wavelength range between 400 to 900 nm. Calibration coefficients to convert image DN value to at-sensor radiance were initially derived from the regression equations between the sample image and spectral measurements using ASD spectroradiometer. Assuming that there is no atmospheric effects when the image acquisition and spectral measurements were made at very close distance in ground, we were also able to derive calibration coefficients that directly transform DN value to surface reflectance. However, these coefficients for deriving reflectance values should not be applied when the camera is used for aerial image that contains significant effect from atmosphere and further atmospheric correction procedure is required in such case.

The Impacts of Decomposition Levels in Wavelet Transform on Anomaly Detection from Hyperspectral Imagery

  • Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.623-632
    • /
    • 2012
  • In this paper, we analyzed the effect of wavelet decomposition levels in feature extraction for anomaly detection from hyperspectral imagery. After wavelet analysis, anomaly detection was experimentally performed using the RX detector algorithm to analyze the detecting capabilities. From the experiment for anomaly detection using CASI imagery, the characteristics of extracted features and the changes of their patterns showed that radiance curves were simplified as wavelet transform progresses and H bands did not show significant differences between target anomaly and background in the previous levels. The results of anomaly detection and their ROC curves showed the best performance when using the appropriate sub-band decided from the visual interpretation of wavelet analysis which was L band at the decomposition level where the overall shape of profile was preserved. The results of this study would be used as fundamental information or guidelines when applying wavelet transform to feature extraction and selection from hyperspectral imagery. However, further researches for various anomaly targets and the quantitative selection of optimal decomposition levels are needed for generalization.

Airborne Hyperspectral Imagery availability to estimate inland water quality parameter (수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰)

  • Kim, Tae-Woo;Shin, Han-Sup;Suh, Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • This study reviewed an application of water quality estimation using an Airborne Hyperspectral Imagery (A-HSI) and tested a part of Han River water quality (especially suspended solid) estimation with available in-situ data. The estimation of water quality was processed two methods. One is using observation data as downwelling radiance to water surface and as scattering and reflectance into water body. Other is linear regression analysis with water quality in-situ measurement and upwelling data as at-sensor radiance (or reflectance). Both methods drive meaningful results of RS estimation. However it has more effects on the auxiliary dataset as water quality in-situ measurement and water body scattering measurement. The test processed a part of Han River located Paldang-dam downstream. We applied linear regression analysis with AISA eagle hyperspectral sensor data and water quality measurement in-situ data. The result of linear regression for a meaningful band combination shows $-24.847+0.013L_{560}$ as 560 nm in radiance (L) with 0.985 R-square. To comparison with Multispectral Imagery (MSI) case, we make simulated Landsat TM by spectral resampling. The regression using MSI shows -55.932 + 33.881 (TM1/TM3) as radiance with 0.968 R-square. Suspended Solid (SS) concentration was about 3.75 mg/l at in-situ data and estimated SS concentration by A-HIS was about 3.65 mg/l, and about 5.85mg/l with MSI with same location. It shows overestimation trends case of estimating using MSI. In order to upgrade value for practical use and to estimate more precisely, it needs that minimizing sun glint effect into whole image, constructing elaborate flight plan considering solar altitude angle, and making good pre-processing and calibration system. We found some limitations and restrictions such as precise atmospheric correction, sample count of water quality measurement, retrieve spectral bands into A-HSI, adequate linear regression model selection, and quantitative calibration/validation method through the literature review and test adopted general methods.

Classifying Forest Species Using Hyperspectral Data in Balah Forest Reserve, Kelantan, Peninsular Malaysia

  • Zain, Ruhasmizan Mat;Ismail, Mohd Hasmadi;Zaki, Pakhriazad Hassan
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • This study attempts to classify forest species using hyperspectral data for supporting resources management. The primary dataset used was AISA sensor. The sensor was mounted onboard the NOMAD GAF-27 aircraft at 2,000 m altitude creating a 2 m spatial resolution on the ground. Pre-processing was carried out with CALIGEO software, which automatically corrects for both geometric and radiometric distortions of the raw image data. The radiance data set was then converted to at-sensor reflectance derived from the FODIS sensor. Spectral Angle Mapper (SAM) technique was used for image classification. The spectra libraries for tree species were established after confirming the appropriate match between field spectra and pixel spectra. Results showed that the highest spectral signature in NIR range were Kembang Semangkok (Scaphium macropodum), followed by Meranti Sarang Punai (Shorea parvifolia) and Chengal (Neobalanocarpus hemii). Meanwhile, the lowest spectral response were Kasai (Pometia pinnata), Kelat (Eugenia spp.) and Merawan (Hopea beccariana), respectively. The overall accuracy obtained was 79%. Although the accuracy of SAM techniques is below the expectation level, SAM classifier was able to classify tropical tree species. In future it is believe that the most effective way of ground data collection is to use the ground object that has the strongest response to sensor for more significant tree signatures.

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery (EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.

Study on the Concentration Estimation Equation of Nitrogen Dioxide using Hyperspectral Sensor (초분광센서를 활용한 이산화질소 농도 추정식에 관한 연구)

  • Jeon, Eui-Ik;Park, Jin-Woo;Lim, Seong-Ha;Kim, Dong-Woo;Yu, Jae-Jin;Son, Seung-Woo;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • The CleanSYS(Clean SYStem) is operated to monitor air pollutants emitted from specific industrial complexes in Korea. So the industrial complexes without the system are directly monitored by the control officers. For efficient monitoring, studies using various sensors have been conducted to monitor air pollutants emitted from industrial complex. In this study, hyperspectral sensors were used to model and verify the equations for estimating the concentration of $NO_2$(nitrogen dioxide) in air pollutants emitted. For development of the equations, spectral radiance were observed for $NO_2$ at various concentrations with different SZA(Solar Zenith Angle), VZA(Viewing Zenith Angle), and RAA(Relative Azimuth Angle). From the observed spectral radiance, the calculated value of the difference between the values of the specific wavelengths was taken as an absorption depth, and the equations were developed using the relationship between the depth and the $NO_2$ concentration. The spectral radiance mixed gas of $NO_2$ and $SO_2$(sulfur dioxide) was used to verify the equations. As a result, the $R^2$(coefficient of determination) and RMSE(Root Mean Square Error) were different from 0.71~0.88 and 72~23 ppm according to the form of the equation, and $R^2$ of the exponential form was the highest among the equations. Depending on the type of the equations, the accuracy of the estimated concentration with varying concentrations is not constant. However, if the equations are advanced in the future, hyperspectral sensors can be used to monitor the $NO_2$ emitted from the industrial complex.