• Title/Summary/Keyword: hyperfine coupling

Search Result 5, Processing Time 0.019 seconds

Coupling Intensity Effects in Ladder-type Electromagnetically Induced Transparency of Rb atoms (결합광 세기에 따른 Rb 원자의 사다리형 전자기 유도 투과)

  • Moon, H.S.;Lee, L.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • We have studied the polarization effects and the coupling intensity effects of electromagnetically induced transparency(EIT) in the 5S$_{1}$2-/5P$_{3}$2-/5D$_{5}$2/ ladder system of Rb. We obtained the EIT spectrum with the hyperfine structure of 5D$_{5}$2/ transitions and the minimal width of the measured EIT spectrum was 6.5 MHz. We observed the change of the relative magnitudes of the hyperfine structure of EIT according to not only the polarizations of lasers but also the intensity of the coupling laser. The cause of the coupling intensity effects is that the EIT signal nonlinearly increases to the coupling intensity.

The hyperfine interaction in water-solvent system (물-용매계에서의 초미세 상호작용)

  • Lee, Mi-Nyeong;Kim, Tae-Kwan;Lee, Sung-Ki;Park, Yoon-Chang
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.194-200
    • /
    • 2005
  • The N hyperfine coupling constants ($a_N$) of di-t-butyl nitroxide (DTBN) radicals in water-solvent system were measured with EPR spectroscopy. Various kinds of the solvents with different polarity such as acetone, dimethylsulfoxide (DMSO), methanol, ethanol and 1-propanol were applied and studied. Equilibrium constants for the solvation equilibrium and the solvent parameters ($E_T$, molar transition energy) of various water-solvent system were obtained from the experimental results and are presented. The $a_N$ values were plotted as a function of mole fraction of the solvent. In case of water-DMSO, water-ethanol and water-1-propanol system, slight negative deviations from the straight line were observed. In water-acetone system, the absorption wavelength (${\lambda}$) due to ${\eta}{\rightarrow}{\pi}^{\ast}$ transition increased linearly with the increase of mole fraction of acetone. The relationship between $a_N$ of DTBN and ${\lambda}$ due to ${\eta}{\rightarrow}{\pi}^{\ast}$ transition in water-acetone and water-DMSO system was examined. It was found that the electronic structure of the nitroxide radicals is stablized from the fact that the N hyperfine coupling constants of DTBN radicals are greatly unaffected in the environment of water-solvent system.

EPR Spectra of ${\alpha}-1,2,3-[HPV(IV)V_2W_9O_{40]}^{6-}$, a Delocalized Mixed-Valence Compound

  • Hyunsoo So;Chul Wee Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.115-118
    • /
    • 1990
  • Solution and frozen solution EPR spectra of $\alpha-1,2,3-[HPV(IV)V_2W_9O_{40}]^{6-}$ have been analyzed. The isotropic hyperfine coupling constants remain constant at 350-77 K, indicating that the unpaired electron is delocalized over three vanadium atoms probably even in the ground state.

A Photoreduction of Phenanthrenequinone by ESR and TRESR Spectroscopy(I)-Solvent Effect on Hyperfine-Splitting Constant of Radicals (ESR 및 TRESR 分光法에 의한 Phenanthrenequinone의 光環元反應(I). Radical의 超微細分離常數에 미치는 溶媒效果)

  • Daeil Hong;Chang Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • The hyperfine splitting constants of phenanthrenequinone anion radical have been determined for the solution of triethylamine with 2-propanol, 2-pentanol or benzene by cwESR and time-resolved ESR methods. The radical anion was produced by photolysis using a pulsed excimer laser. The resulting hyperfine splitting constant A$_{H1}$ and A$_{H2}$ are 1.662, 0.378 in 2-propanol, 1.602, 0.361 in 2-pentanol and 1.518 in benzene respectively. The hyperfine coupling constants decrease with the decreasing of polarity of the mixed solvent. The tendency of the variation depends on the polarity of the solvents, thus, making it in impossible to observe the magnetic equivalent proton in a mixed solvent of nonpolar benzene. Particularly, time-resolved ESR spectrum of triethylamine radical (TEA${\cdot}$) has been observed in 0.15∼0.30 ${\mu}s$ from the solvent of 3 : 1 with 2-pentanol and triethylamine. Thus from the results of solvent effect, we can suggest that the identification of the unstable short-lived spin polarized phenanthrenequinone anion radical(*PQ${\cdot}^-$) proceed through photochemistry.

  • PDF

Synthesis and Characterization of Dichloro and Dibromo(2-(dimethylaminomethyl)thiophene) Copper(II) Complexes

  • Kim, Young-Inn;Choi, Sung-Nak;Ro, Chul-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.549-553
    • /
    • 1994
  • The 2-(dimethylaminomethyl)thiophene (dmamt) complexes with copper(II) chloride and bromide were prepared and characterized by optical, EPR, XPS spectroscopies and magnetic susceptibility measurements. The low-energy absorption band above 850 nm and the relatively small EPR hyperfine coupling constant ($A_{//}{\simeq}$125 G) indicate the pseudotetrahedral site symmetry around copper(II) ion both in Cu(dmamt)$Cl_2$ and Cu(dmamt)$Br_2$ complexes. The higher satellite to main peak intensity of Cu $2P_{3/2}$ core electron binding energy in XPS spectra also supports the pseudotetrahedral geometry around the copper(II) ions having $CuNSX_2$ chromophores. The distortion from square-planar to pseudotetrahedral symmetry is likely to arise from the steric hindrance of the bulky dmamt ligand in the complex. Magnetic susceptibility study shows that these compounds follow Curie-Weiss law in the temperature range of 77-300 K with positive Weiss constant exhibiting the ferromagnetic interaction between copper(II) ions in solid state.