• Title/Summary/Keyword: hypereutectic

Search Result 80, Processing Time 0.033 seconds

Microstructural Characteristics of SiC Particle Reinforced Aluminum Alloy Composite by Squeeze Casting (Squeeze Casting에 의한 SiC 입자강화 Al합금기 복합재료의 미세조직 특성)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.566-573
    • /
    • 1995
  • In this study, the microstructural characteristics such as primary silicon, eutectic silicon, $SiC_p$ dispersion behavior, compound amount and Si solubility in $Al/SiC_p$ composite fabricated by the squeeze casting under various conditions were investigated systematically. As applied pressure(MPa) increases, cooling rate and compound amount are increased. In gravity casting, the cooling rate of hypereutectic composite is slower than of hypoeutectic composite by exothermic reaction of primary Si crystallization. But the cooling rate of hypereutectic composite is faster than that of hypoeutectic composite fabricated by same applied pressure, because amount of primary Si crystallization in hypereutectic composite was decreased, on the contrary, primary ${\alpha}-Al$ in hypoeutetic composite was increased due to increase of Si solubility in matrix by applied pressure. The crystalized primary silicon in hypereutectic composite fabricated by squeeze casting become more fine than that in non-pressure casting This is because mush zone became narrow due to increase of Si content of eutectic composition by pressure and time for growth of primary silicon got shorter according to applied pressure. It is turned out that eutectic temperature and liquidus are decreased by the increasing of squeeze pressure in all the composite due to thermal unstability of matrix owing to increasing of Si solubility in matrix by the increasing of applied pressure, as indicated in thermal anaiysis(DSC) results.

  • PDF

Fabrication and Properties of High Strength Hypereutectic Al-Si Powder by Gas Atomization Process I. Powder Production and Compressibility (가스분무 공정에 의한 고강도 과공정 Al-Si 합금 분말의 제조 및 특성 연구 I. 분말 제조 및 성형성)

  • Kim Yong-Jin;Kim Jin-Chun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.296-302
    • /
    • 2005
  • In order to improve mechanical properties, the hypereutectic Al-20 wt%Si based prealloy powder was prepared by gas atomization process. Microstructure and compressibility of the atomized Al-Si powder were investigated. The average powder size was decreased with increasing the atomization gas pressure. Size of primary Si particles of the as-atomized powder was about $5-8\;\mu{m}$. The as-atomized Al-Si powder such as AMB 2712 and AMB 7775 to increase compressibility and sinterability. Relative density of the mixed powder samples sintered at $600^{\circ}C$ was reached about 96% of a theoretical density.

$\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy (반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF

A Study on the Ultrasonic Vibration Cutting of Hypereutectic Aluminum-Silicon Alloy (과공정 알루미늄 실리콘 합금의 초음파 진동 절삭에 관한 연구)

  • Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.170-177
    • /
    • 1999
  • 과공정 알루미늄 실리콘 합금 (Hypereutectic Al-Si Alloy, A390)은 내마멸성 및 우수한 강성에 의해서 자동차 부품에 많이 사용되고 있다. 본 연구에서는 초음파 진동 절삭에 의한 과공정 알루미늄 실리콘 합금의 가공성과 실리콘 석출의 실험적 연구를 수행 하였다. 최적 공구와 가공조건의 선정 실험을 통하여 보다 효과적인 초음파 진동 절삭을 수행하였으며, 과공정 알루미늄 실리콘 합금의 가공 표면거칠기와 실리콘 석출은 절삭속도와 절삭깊이와 밀접한 연관성을 갖고 있다.

  • PDF

A study on the mirror like machining of Al-Si alloy for extraction of Si particle (Al-Si합금의 Si석출 경면가공에 관한 연구)

  • 이은상;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2279-2286
    • /
    • 1992
  • A hypereutectic Aluminum-Silicon Alloy is widely used in the parts of autombile because of high-resistance and good strength. In this study, the cutting of a hypereutectic Al-Si alloy (A390) for extraction of Si particle was experimentally investigated. By proper selection of cutting tool materials and optimization of cutting conditions, economical machining of this alloy is achieved. The surface roughness relates closely with the feed rate and cutting speed.

Fabrication and Properties of High Strength Hypereutectic AI-Si Powders by a Gas Atomization Process II. Extrusion and Mechanical Properties (가스분무 공정에 의한 고강도 과공정 AI-Si 합금 분말의 제조 및 특성연구 II. 압출재 제조 및 기계적 특성)

  • Kim, Yong-Jin;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • The hypereutectic Al-20 wt%Si powders including some amount of Cu, Fe, Mg, Mn were prepared by a gas atomization process. In order to get highly densified Al-Si bulk specimens, the as-atomized and sieved powders were extruded at $500^{\circ}C$, Microstructure and tensile properties of the extruded Al-Si alloys were investigated in this study. Relative density of the extruded samples was over 98%. Ultimate tensile strength (UTS) in stress-strain curves of the extruded powders increased after T6 heat treatments. Elongation of the samples was also increased from 1.4% to 3.2%. The fracture surfaces of the tested pieces showed a fine microstructure and the average grain size was about $1{\mu}m$.

The Effects of Sc on the Microstructures of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 미세조직에 미치는 Sc의 영향)

  • Jeong Y. S.;Kim M. H.;Choi S. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.480-485
    • /
    • 2005
  • Sc has been known to be an very effective ppt-hardening element in Al and Al alloys and also to be effective in modification of eutectic Si in hypoeutectic Al-Si alloys. The modification mechanism of Sc is different from that of the traditional modifier Sr in Al-Si alloys. In the present study the effects of Sc on the primary and eutectic Si in hypereutectic Al-Si alloys were investigated with evaluating the microstructures with OM, EPMA and EBSD methods. The results represent that Sc has only a small effect on primary Si when added less than $0.8wt\%$. However, when Sc addition leading to the precipitation of metallic Sc within primary Si reaches $1.6wt\%$, very coarse primary Si occurs.

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

A1-Si합금의 Si경면석출 가공에 관한 연구(l) -처적 절삭조건의 선정-

  • 이은상;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.60-65
    • /
    • 1992
  • A hypereutectic Aluminum-Silicon Alloyis widely used in the parts of automobile because of high-resistance and good strength. In this study, the cutting of a hypereutectic A1-Si alloy (A390) for extraction of Si particle was experimentally investigatec. By proper selection of cutting tool material and optimization of cutting conditions economical machining of this alloy is achieved. The surface roughness relate closely with the feed rate and cutting speed.

Deformation Behavior of Spray-formed Hypereutectic Al-Si Alloys (분무성형을 통해 제조된 과공정 Al-Si 합금의 기계적 특성)

  • Park W. J.;Ha T. K.;Ahn S.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.285-288
    • /
    • 2001
  • Hypereutectic Al-25Si-X alloys, expected to be applied to the cylinder-liner-part of the engine-block of an automobile due to the excellent wear resistance, low density and low thermal expansion coefficient has been fabricated through a spray forming process. The obtained microstructure of the hypereutectic Al-25Si-X alloy appeared to consist of Al matrix and equiaxed Si particles of average diameter of $5-7{\mu}m$. To characterize the deformation behavior of this alloy, a series of load relaxation and compression tests have been conducted at temperatures ranging from RT to $500^{\circ}C$. The strain rate sensitivity parameter (m) of this alloy has been found to be very low (0.1) below foot and reached 0.2 at $500^{\circ}C$. During the deformation above 300'c in compression, strain softening has been observed. The diagram of extrusion pressure vs. ram-speed has been constructed, providing the extrusion condition of Al-25Si-X alloys.

  • PDF