• Title/Summary/Keyword: hyperbolic mode

Search Result 25, Processing Time 0.022 seconds

A Study on the Utilization of Coal Ash as Earthwork Materials (석탄회의 토공재로서의 활용에 관한 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 1996
  • In this study, the possibility of the utilization of coal ash as earthwork materials is investigated. For this purpose, some laboratory experiments were carried out. The samples used in these tests are fly ash(FA), bottom ash(BA), coal ash dropped into ash pond(FA:BA=8:2), and mixed coal ash(FA:BA=5:5), which were discharged as a by-product at Yong-Yeul thermoelectric power plant, and general road filling materials. And for the deformation analysis of coal ash reclamation ground, several hyperbolic model parameters were determined by triaxial compression test. As a result of this study, coal ash has excellent engineering properties such as strength parameters comparing with general soils of the same grain size, especially in case of being used as backfill materials and reclamation materials on soft ground, and coal ash is superior to general earthwork materials in engineering properties becasuse of self hardening behaveiour, light weight property, etc.

  • PDF

Generalized Command Mode Finite Element Method Toolbox in CEMTool

  • Ahn, Choon-Ki;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1349-1353
    • /
    • 2003
  • CEMTool is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present a compiler based approach to the implementation of the command mode generalized PDE solver in CEMTool. In contrast to the existing MATLAB PDE Toolbox, our proposed FEM package can deal with the combination of the reserved words such as "laplace" and "convect". Also, we can assign the border lines and the boundary conditions in a very easy way. With the introduction of the lexical analyzer and the parser, our FEM toolbox can handle the general boundary condition and the various PDEs represented by the combination of equations. That is why we need not classify PDE as elliptic, hyperbolic, parabolic equations. Consequently, with our new FEM toolbox, we can overcome some disadvantages of the existing MATLAB PDE Toolbox.

  • PDF

SOC Estimation Based on OCV for NiMH Batteries Using an Improved Takacs Model

  • Windarko, Novie Ayub;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2010
  • This paper presents a new method for the estimation of State of Charge (SOC) for NiMH batteries. Among the conventional methods to estimate SOC, Coulomb Counting is widely used, but this method is not precise due to error integration. Another method that has been proposed to estimate SOC is by using a measurement of the Open Circuit Voltage (OCV). This method is found to be a precise one for SOC estimation. In NiMH batteries, the hysteresis characteristic of OCV is very strong compared to other type of batteries. Another characteristic of NiMH battery to be considered is that the OCV of a NiMH battery under discharging mode is lower than it is under charging mode. In this paper, the OCV is modeled by a simple method based on a hyperbolic function which well known as Takacs’s model. The OCV model is then used for SOC estimation. Although the model is simple, the error is within 10%.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT

  • Addou, Farouk Yahia;Meradjah, Mustapha;Bousahla, Abdelmoumen Anis;Benachour, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.347-367
    • /
    • 2019
  • This work investigates the effect of Winkler/Pasternak/Kerr foundation and porosity on dynamic behavior of FG plates using a simple quasi-3D hyperbolic theory. Four different patterns of porosity variations are considered in this study. The used quasi-3D hyperbolic theory is simple and easy to apply because it considers only four-unknown variables to determine the four coupled vibration responses (axial-shear-flexion-stretching). A detailed parametric study is established to evaluate the influences of gradient index, porosity parameter, stiffness of foundation parameters, mode numbers, and geometry on the natural frequencies of imperfect FG plates.

Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model (역모델을 이용한 MR 댐퍼의 감쇠계수 제어)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

Water Supply forecast Using Multiple ARMA Model Based on the Analysis of Water Consumption Mode with Wavelet Transform. (Wavelet Transform을 이용한 물수요량의 특성분석 및 다원 ARMA모형을 통한 물수요량예측)

  • Jo, Yong-Jun;Kim, Jong-Mun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.317-326
    • /
    • 1998
  • Water consumption characteristics on the northern part of Seoul were analyzed using wavelet transform with a base function of Coiflets 5. It turns out that long term evolution mode detected at 212 scale in 1995 was in a shape of hyperbolic tangent over the entire period due to the development of Sanggae resident site. Furthermore, there was seasonal water demand having something to do with economic cycle which reached its peak at the ends of June and December. The amount of this additional consumption was about $1,700\;\textrm{cm}^3/hr$ on June and $500\;\textrm{cm}^3/hr$ on December. It was also shown that the periods of energy containing sinusoidal component were 3.13 day, 33.33 hr, 23.98 hr and 12 hr, respectively, and the amplitude of 23.98 hr component was the most humongous. The components of relatively short frequency detected at $2^i$[i = 1,2,…12] scale were following Gaussian PDF. The most reliable predictive models are multiple AR[32,16,23] and ARMA[20, 16, 10, 23] which the input of temperature from the view point of minimized predictive error, mutual independence or residuals and the availableness of reliable meteorological data. The predicted values of water supply were quite consistent with the measured data which cast a possibility of the deployment of the predictive model developed in this study for the optimal management of water supply facilities.

  • PDF

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.