• Title/Summary/Keyword: hygrothermal

Search Result 106, Processing Time 0.025 seconds

Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method

  • Ebrahimi, Farzad;Heidari, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.131-157
    • /
    • 2018
  • In this study, Eringen nonlocal elasticity theory in conjunction with surface elasticity theory is employed to study nonlinear free vibration behavior of FG nano-plate lying on elastic foundation, on the base of Reddy's plate theory. The material distribution is assumed as a power-law function and effective material properties are modeled using Mori-Tanaka homogenization scheme. Hamilton's principle is implemented to derive the governing equations which solved using DQ method. Finally, the effects of different factors on natural frequencies of the nano-plate under hygrothermal situation and various boundary conditions are studied.

Design of High Stability Space Tube

  • Lee Deog-Gyu;Woo Sun-Hee;Lee Eung-Shik;Youn Heong-Sik;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.479-482
    • /
    • 2004
  • Laminate Design of a composite tube for a space telescope(Fig. 1) under hygrothermal load is studied. Carpet plots for laminate effective engineering constants are generated and used for selecting the best tube lay-ups satisfying the optomechanical requirements for a space telescope being dimensional1y stable under orbital thermal loading. Despace of the tubes constructed with the selected lay-ups are calculated with a Zig-Zag Triangular Element which accurately represents through thickness stress variations for laminated structures. The effects of moisture absorption when exposed to humidity environment and moisture desorption through outgassing on the dimensional stability are also investigated.

  • PDF

The Influence of Water Environment on the Mechanical Properties of Carbon/Epoxy Reinforced Composite Materials (탄소섬유강화형 복합재료의 기계적 성질에 미치는 수환경의 영향)

  • 김귀식;박경석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.52-59
    • /
    • 1993
  • This study is investigated of tensile and fatigue strength for advanced composite materials under hygrothermal environment. The materials used are two types of Carbon/Epoxy reinforced composite materials i.e., 13$0^{\circ}C$ cure-type composite T-1/347, and 18$0^{\circ}C$ cure-type MM-1/982X. These are composed by cross-ply laminates. Test condition is the distilled water of 8$0^{\circ}C$. The separate absorption contents estimated by the Fick's diffusion rule are similar to the experiment results. The tensile strength of T-1/347 wet specimens more increased than that of dry ones, but that of MM-1/982X decreased. The fatigue strengthes of both T-1/347 and MM-1/982X wet specimen more decreased than those of dry specimens.

  • PDF

Effect of Moisture Absorption on Dielectric Breakdown Phenomena of DGEBA/MDA/SN/Natural Zeolite System (DGEBA/MDA/SN/천연 제올라이트계의 절연파괴현상에 미쳐는 흡습의 영향)

  • Kim, You-Jeong;Lee, Hong-Ki;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.994-996
    • /
    • 1999
  • Hygrothermal aging at the elevated temperature induces the long-term degradation of the epoxy resin. We investigated the effects of hydrothermal stress on the dielectric breakdown phenomena of epoxy composite filled with natural zeolite. The cured specimens absorbed the moisture in the autoclave at $120^{\circ}C$. $T_g$ of the deteriorated composite by moisture absorption decreased. The dielectric breakdown strength decreased with the moisture absorption cycle. It was concluded that the thermal stress and the high water-vapour-pressure deteriorated the natural zeolite filled epoxy resin system, consequently and the tree growth rate increased.

  • PDF

Moisture Adsorption and Desorption Property of the Wallpaper using Natural Substance (천연 물질을 적용한 벽지의 흡·방습 성능에 관한 연구)

  • Hwang, Hye-jin;Kim, Dong-kwon;Jeong, Jae-sik;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • In this study, natural substance and mineral materials was used for architectural interior wallpaper. Because natural substance and minerals are environment-friendly material with moisture adsorption and desorption properties. Natural substance and mineral materials was evaluated in moisture adsorption and desorption properties. Also, in the diatomite, the pores were observed on SEM photographs. Thus, it is supposed that moisture adsorption and desorption properties were influenced by the microstructure of the pore. The wallpaper according to the ratio of the mixture was analyzed for physical properties and moisture adsorption & desorption properties. As a result, we developed a wallpaper having excellent hygrothermal performance.

Finite element simulation of drying process for ceramic electric insulators (세라믹 애자 건조공정의 유한요소 시뮬레이션)

  • 정준호;금영탁;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.347-352
    • /
    • 1999
  • The finite element formulation and simulation of drying process for ceramic electric insulators are investigated. The heat and moisture movements in green ceramics caused by the interaction of temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The variations of temperature and moisture not only change the volume but also induce the hygro-thermal stress. The finite element formulation for solving the temperature and moisture distributions as well as the associated hygro-thermal stresses is derived. Using the computer code developed, the drying process of a ceramic electric insulator is simulated. Temperature distribution, moisture distribution, hygrothermal stress and deformed shape during the drying process are predicted.

  • PDF

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Vinyas, M.;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.

Nonlinear static analysis of laminated composite beams under hygro-thermal effect

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.433-441
    • /
    • 2019
  • In this paper, geometrically nonlinear static analysis of laminated composite beams is investigated under hygrothermal effect. In the solution of problem, the finite element method is used within the first shear beam theory. Total Lagrangian approach is used nonlinear kinematic model. The geometrically nonlinear formulations are developed for the laminated beams with hygro-thermal effects. In the nonlinear solution of the problem, the Newton-Raphson method is used with incremental displacement. In order to verify of obtained formulations, a comparison study is performed. The effects of the fiber orientation angles, the stacking sequence of laminates, temperature rising and moisture changes on the nonlinear static displacements and configurations of the composite laminated beam are investigated in the numerical results.

THE AGING EFFECT Of K3B/IM7 IN $80^{\circ}C$ WATER

  • Kim Hyungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.31-34
    • /
    • 2005
  • Hygrothermal aging of the laminates of $Avimid^{R}$ K3B/IM7 in $80^{\circ}C$ water was studied as a function of immersion time prior to forming microcracks. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, change in residual stresses or interfacial damage between the fiber and matrix. The times to saturation in $80^{\circ}C$ water for the laminates and the neat resin are 100 hours and 500 hours. After 500 hours aging of the neat resin in $80^{\circ}C$ water, the glass transition temperature was changed less than $1\%$ by DSC test and the weight gain was $1.55\%$ increase. After 500 hours aging, the fracture toughness of the neat resin was decreased about $37\%$ by 3-point bending test. After 100 hours aging of the [+45/0/-45/90]s K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was $0.41\%$ increase. The $80^{\circ}C$ water diffusion rate into the neat resin was faster than into the laminates. In 100 hours, the loss of the microcracking toughness of the laminates was $28\%$ of the original toughness by our own microcracking fracture toughness criterion.

  • PDF

The Aging Effect of $Avimid^(R)$ K3B/1M7 Laminates in $80^{\circ}C$ Water ($Avimid^(R)$ K3B/IM7 복합재료의 $80^{\circ}C$ 물에서의 노화현상)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.23-30
    • /
    • 2005
  • The Hygrothermal aging of the laminates of $Avimid^(R)$ K3B/IM7 in $80^{\circ}C$ water was studied as a function of immersion time prior to forming microcracks. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, the change in residual stresses or the interfacial damage between the fiber and the matrix. The times to saturation in $80^{\circ}C$ water for the laminates and for the neat resin were 100 hours and 500 hours. After 500 hours aging of the neat resin, the glass transition temperature was changed less than 1% by DSC test, and the weight gain was 1.55% increase with the diffusion coefficient $7\times10^{-6}m/s^2$ and the fracture toughness was decreased about 41%. After 100 hours fully saturated aging of the ${[+45/0/-45/90]}_s$ K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was 0.41% increase with the diffusion coefficient $1\times10^{-6}m/s^2$. In 100 hours, the loss of the fracture toughness of the laminates was 43.8% of the original toughness by the microcracking fracture toughness criterion. Therefore, the main factor to degrade the microcracking toughness of the laminates could be the degradation of the matrix fracture toughness.