• Title/Summary/Keyword: hygroscopic range

Search Result 28, Processing Time 0.023 seconds

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation (양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절)

  • Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.

Evaluation of Surface Moisture Content of Liriodendron tulipifera Wood in the Hygroscopic Range Using NIR Spectroscopy (근적외선 분광분석법을 이용한 백합나무 목재의 섬유포화점 이하 표면함수율 평가)

  • Eom, Chang-Deuk;Han, Yeon-Jung;Chang, Yoon-Sung;Park, Jun-Ho;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.526-531
    • /
    • 2010
  • For efficient use of wood, it is important to control moisture of wood in processing wood. Near-infrared (NIR) spectroscopy can be used to estimate the physical and chemical properties of materials quickly and nondestructively. In this study, it was intended to measure the moisture contents on the surface of wood using NIR spectroscopy coupled with multivariate analytic statistical techniques. Because NIR spectroscopy is affected by the chemical components of the specimens and contains signal noise, a regression model for detecting moisture content of wood was established after carrying out several numerical pretreatments such as Smoothing, Derivative and Normalization in this study. It shows that the regression model using NIR absorbance in the range of 750~2,500 nm predicts the actual surface moisture content very well. Near-infrared spectroscopy technique developed in this study is expected to improve a technology to control moisture content of wood in using and drying process.

Determination of Trend of a Radial Distribution of Moisture Content within a Log Cross Section by Oven-Drying of Circumferential Slices(II) - For some of domestic softwoods - (원주상(圓周狀)슬라이스의 오-븐건조법에 의한 함수율의 원반(圓盤)내 방사방향분포 추이 평가 (II) - 주요 국산 침엽수재를 중심으로 -)

  • Lee, Nam-Ho;Li, Chengyuan;Choi, Jun-Ho;Hwang, Ui-Do;Jin, Young-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • This study was carried out to investigate a radial distribution of moisture contents (MCs) within a log cross section (LC) during oven-drying of 3 mm-thick circumferential slices cut from several domestic softwoods LCs.For Korean red pine, drying rate of sapwood slices during oven-drying represented much higher values than that of heartwood slices, and so sapwood with higher green MC early reached below fiber saturation point (FSP) rather than heartwood did. However, this distribution of moistures did not last for long duration. For Japanese larch, green MC of sapwood was approximately three times higher than that of heartwood. This similar distribution in MC was lasted until about 20% average MC. The MC was around uniform throughout the sapwood of Ginkgo when green and during oven-drying, although it was somewhat fluctuated. For Japanese cedar, the heartwood with so low moistures around FSP would begin to shrink from the beginning stage of drying, but the sapwood above hygroscopic MC prevents the heartwood from shrinking, and consequently, the heartwood or the transition wood goes into tension stress. The results for Japanese cypress showed that the green MCs of the sapwoods were much lower than those for heartwoods, and then this trend was continued until about 20% in average MC. For Chinese thuja, the green MCs of sapwoods were about 2 times as high as those of heartwood, but this along the radial gradient in MC rapidly became gentle during oven-drying.

Effect of Moisture on the Melting Point and High-Temperature Stability of NaKZn-Chloride (수분이 NaKZn-Chloride의 녹는점과 고온안정성에 미치는 영향)

  • Lee, Jeong Hwan;Kim, Young;Yoon, Seok Ho;Lee, Kong Hoon;Choi, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.555-560
    • /
    • 2018
  • The high temperature stability of a chloride mixture, $NaCl-KCl-ZnCl_2$ (NaKZn-Chloride), is investigated to evaluate its potential as a thermal storage material. A thermal storage media should maintain a stable thermal properties within the temperature range of heat storage. Results from an a priori experiment showed that the NaKZn-chloride is stable only up the much lower temperature, while its stability limit is reported to be $850^{\circ}C$ in the literature. This study aims to investigate if the thermal property is changed by the moisture absorbed in the heat storage material. The effect of moisture content on the thermal properties was measured. The results show that the melting point remains the same regardless of the amount of moisture absorbed. Meanwhile, the high temperature stability is lower for the moisture treated samples. The results of this work infer that the loss of a hygroscopic thermal storage media can be reduced by avoiding its contacts to moisture in designing high temperature thermal storage systems.

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Analysis of Drying Efficiency for Circulating and Falling Movements on Indirected Drying Process of Food Waste (음식물류폐기물 간접건조과정에서의 순환 및 낙하이동에 따른 건조효율 평가)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.106-117
    • /
    • 2012
  • Indirected heating dryer is used as one of the food waste treatment technologies for the production of the drier material supplied to the recycling facilities or end user. This study investigated the effect on drying efficiency for the operation of rotating screw with the circulating and falling movements on indirected drying process of food waste. The screw operating condition showed higher drying efficiency despite of the shorter drying time compared to the screw non-operating condition. The moisture content decreased to 14.4% from the initial moisture content of 77.1% after drying 5 hours in the screw operating condition. On the other hand, in the screw non-operating condition, the moisture content decreased slightly to 35.6% after drying 16 hours. During the drying process, variations of the water evaporation rate and particle size showed different tendencies depending on the moisture content regions. In the higher moisture content region above the glue zone(moisture content of about 50%-60%), the particle size increased and the water evaporation rate reached the highest peak. In the range of glue zone, the particle size maximized while the water evaporation rate decreased sharply. In the lower moisture content region below the glue zone, the water evaporation rate and particle size both decreased at the same time. The particle size distribution was widely ranged from 25.0mm to 0.25mm in the screw operating condition while it was narrowly distributed in the screw non-operating condition from 25.0mm to 3.56mm, especially highly concentrated to 25.0mm. It was regarded that the hygroscopic, capillary and gravitational water evaporated more easily from the intra-particle during the circulating and falling movement caused by the rotating of the screw and the difference of the cohesional force of water within intra-particle depending on the moisture content regions. Comparing the effect of the circulating and falling movement on drying efficiency, the water evaporation rates per time and per weight of dry solid in the screw operating condition were higher about 364% and 356%, respectively, than those of the screw non-operating condition.

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.

Effect of Air Circulation Velocity on the Rate of Lumber Drying in a Small Compartment Wood Drying Kiln (소형 목재인공건조실에 있어서 공기순환속도가 목재건조율에 미치는 영향)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.5-7
    • /
    • 1974
  • 1. This study indicates that above the fiber saturation point the drying rate can be increased with increasing the velocity of the air circutation, i.e., the drying rate of sample boards is proportional to the air velocity, but below the fiber saturation point, the effect of the velocity of air circulation is very low as shown in Figs. 1 and 2. 2. Under the controlled temperature and humidity in the kiln, the more the sample boards have moisture, the higher drying rate of it can be obtained. In other words, this means that even though in the case of drying various moisture content of wood, at the final drying stage, approximately the same percentage of moisture content of wood can be secured by employing the higher velocity of air circulation. 3. This study shows that the rate of drying in kiln changes distinctly at the fiber saturation point, i, e., above the fiber saturation point, the drying curve shows concave aginst the X axsis, but below the fiber saturation point, in the range from 30 percent of moisture content to 20 percent of moisture content, the curve shows convex as shown in Fig. 3. As the drying progresses, however, the drying curve shows concave again below 20 percent of moisture content. This means that inflection point of drying curve may be located clearly at the fiber saturation point, i.e., 30 percent of moisture content. As mentioned above, the 30 percent of moisture content of wood at which the inflectional point appears can be recognized as a critical point, i. e., the fiber saturation point at which all free water was removed from wood. The existence of inflectional point indicates that the evaporation of hygroscopic water in a cell wall is more difficult than the evaporation of free water in a cell cavity and the minor space of cell wall. The convex curve in the range of moisture content from 30 percent to 20 percent means that the evaporation of capillary condensed water has a tendency of the same rates of drying approximately, but as approaching to the 20 percent of moisture, the transfusion of moisture from wood becomes difficult because of having less moisture in cell wall. Below 20 percent of moisture content, the drying curve shows concave again, which means that it is difficult to remove the moisture located nearer to the surface of cellulose molecules and the surface bound water. These relations were revealed in Fig. 4. In comparison AC curve which does not have the two inflection points with BD curve which has two inflection points, i.e., Band D, they are mentioned already, by existence of the inflection points, the curve BD shows that the change of drying rate in the interval from 20 percent of moisture content to 30 percent of moisture content is not greater than in the case of the curve AC in the same interval. At the inflection point of 30 percent of moisture content, it can be noticed that the changing of the drying rate is very conspicuous. This phenomenon also can be recognized, as it is noticed by the Fig. 3, the drying rate from green to 30 percent of moisture content is very great. But the inclination of the curve is very slow from 30 percent of moisture content to 20 percent of moisture content, i.e., the inclination of the curve becomes almost horizontal lines. Acknowledgments Gratitude is expressed to Fred E. Dickinson, Professor of 'Wood Technology, School of Natural Resources, University of Michigan, USA for his suggestion to carry out this study.

  • PDF