• Title/Summary/Keyword: hygroscopic particle

Search Result 32, Processing Time 0.022 seconds

The Functional Effects of Polyester treated with silk sericin (견 세리신을 이용한 폴리에스텔의 기능성 향상)

  • 김종호;김영대;강경돈;우순옥;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.44 no.1
    • /
    • pp.37-41
    • /
    • 2002
  • The attaching treatment of sericin onto polyester fiber was attempted to improve its sanitary properties. Generally, sericin, a gummy material covering the outer layer of silk filament, is subjected to be removed during degumming process of silk textile process. For this study, sericin particle dissolved within the degumming waste water could be collected by sedimentation of polyaluminium chloride. It was revealed that sericin particle were attached onto the surface of polyester fiber evenly by treatment of glutaraldehyde, a crosslinking agent. A frictional static charge of the treated polyester fabric could be improved, while its hygroscopic property was little changed.

Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: analysis of the PM10 concentration difference by different methods in coastal areas

  • Shin, So Eun;Jung, Chang Hoon;Kim, Yong Pyo
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.69-82
    • /
    • 2012
  • Based on the measurement data of the particulate matter with an aerodynamic diameter of less than or equal to a nominal 10 ${\mu}m$ (PM10) by the ${\beta}$-ray absorption method (BAM) equipped with an inlet heater and the gravimetric method (GMM) at two coastal sites in Korea, the optimal inlet heater temperature was estimated. By using a gas/particle equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2), water content in aerosols was estimated with varying temperature to find the optimal temperature increase to make the PM10 concentration by BAM comparable to that by GMM. It was estimated that the heated air temperature inside the BAM should be increased up to $35{\sim}45^{\circ}C$ at both sites. At this temperature range, evaporation of volatile aerosol components was minor. Similar ($30{\sim}50^{\circ}C$) temperature range was also obtained from the calculation based on the absolute humidity which changed with ambient absolute humidity and chemical composition of hygroscopic species.

Potential Biases Arising in the Use of Cascade Impactors to Estimate Respiratory Tract Deposition Patterns of Lead-Acid Battery Plant Aerosols

  • Hodgkins Douglas G.;Robins Thomas G.;Hinkamp David L.;Levine Steven P.;Schork M. Anthony;Krebs William H.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.585-595
    • /
    • 1994
  • The region of the respiratory tract where inhaled particles deposit can have important implications for the causation of local or systemic toxic effects. For most aerosols of occupational importance, respiratory tract deposition can be predicted from the aerodynamic diameter of the particles. With the advent of cascade impactors, particularly those of personal sampler size, the determination of the aerodynamic diameters of aerosols has become more common. Some limitations of cascade impactor use are well recognized (e.g., particle bounce and substrate overloading) and are generally correctable. However, two important limitations of the instruments may not be receiving adequate attention: relative humidity effects on potentially hygroscopic aerosols and the collection characteristics of fibrous aerosols as compared to their actual deposition site potential. The results of this study, when compared to results of previous controlled laboratory trials, suggest that, while potentially hygroscopic lead aerosols from lead acid battery plant operations do not appear to be affected by changes in plant environmental humidity levels, the potential - exists for significant size changes upon inhalation. Secondly, fibers were detected in aerodynamic size ranges that would be associated with deep lung deposition; however, upon microscopic examination, these same fibers would actually be predicted to deposit in the upper airways. This study suggests that the physicalchemical properties and morphological features of an aerosol should be carefully considered by industrial hygienists before cascade impactors are used in attempts to predict the effects of inhaled aerosols.

  • PDF

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

Seasonal Characteristics of PM2.5 Water Content at Seoul and Gosan, Korea (서울과 고산의 PM2.5 수분함량 계절 특성)

  • Lee, Hyung-Min;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.94-102
    • /
    • 2010
  • Water content of $PM_{2.5}$ (particles in the atmosphere with a diameter of less than or equal to a nominal $2.5{\mu}m$) was estimated by using a gas/aerosol equilibrium model, SCAPE2, for the particles collected at Seoul and Gosan, Korea. From measured and analyzed characteristics of the particles, the largest difference between Seoul and Gosan is the proportions of total ammonia (t-$NH_3$=gas phase $NH_3$+particle phase ${NH_4}^+$), total nitric acid (t-$HNO_3$=gas phase $HNO_3$+particle phase ${NO_3}^-$) and sulfuric acid ($H_2SO_4$). Even though both sites have sufficient t-$NH_3$ to neutralize acidic species such as $H_2SO_4$, t-$HNO_3$, and t-HCl (total chloric acid=gas phase HCl+particle phase $Cl^-$), equivalent fraction of t-$NH_3$ and t-$HNO_3$ are higher at Seoul and $H_2SO_4$ is higher at Gosan. Based on the modeling result, it is identified that the $PM_{2.5}$ at Seoul is more hygroscopic than Gosan if the meteorological conditions are the same. To reduce water content of $PM_{2.5}$, and thus, mass concentration, control measures for ammonia and nitrate reduction are needed for Seoul, and inter-governmental cooperation is required for Gosan.

A study of the Optical Characteristics for Contaminated Brake Fluid, DOT-3 (DOT-3 브레이크액에서 오염에 따른 광학적 특성 연구)

  • Ji, In-Geun;Kim, Yeo-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.354-358
    • /
    • 2015
  • The results of between resistance and optical transparency measurement in DOT-3 brake fluid contaminated moisture and particles generated from fraction of brake system was compared. Conventional resistance measurement method was known to be effaced by it's hygroscopic characteristics. However, the particle is a significant element of the contamination sources. Proposed optical transparency measurement is linear and effective than that of contamination in brake fluid.

The Effect on Visibility of the Chemical Composition of Fine Particles in the Gwangju Area (광주지역 미세먼지의 화학적 조성이 시정에 미치는 영향에 관한 연구)

  • Jung, Sun-A;Lim, Cheol-Soo;Jo, Mi-Ra;Lee, Sang-Bo;Kim, Jung-Soo;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Objectives: The purpose of this study is to investigate the main cause of visibility impairment by analyzing the contributions of the light extinction coefficient of major air pollution components and the change of the light extinction coefficient by relative humidity. Methods: The characteristics of the light extinction coefficient calculated by the photochemical method using fine particle component data measured in 2015 in the Gwangju area were examined. Results: The extinction efficiency per unit mass of $PM_{2.5}$ particles was $4.5m^2/g$ and that of $PM_{10-2.5}$ particles was $0.6m^2/g$. This difference indicates that most of the visibility impairment in Gwangju was caused by $PM_{2.5}$ particles. When visibility was poor, the contribution of ammonium sulphate and ammonium nitrate was significantly increased. Relative humidity was also a major cause of visibility decay. The influx of air currents in Gwangju was mostly caused by the long distance movement of pollutants emitted from the eastern part of China. Ammonium sulphate and ammonium nitrate, which are hygroscopic secondary contaminants, were the main causative agents of visibility impairment. Conclusions: Ammonium sulphate and ammonium nitrate were the main causative agents of visibility impairment in Gwangju. The influx of air currents in Gwangju was mostly caused by the long distance movement of pollutants emitted from the eastern part of China.

Preparation of Fine Silk Powder and It′s Application for Surface Modification (폐견사류의 미세분말화 및 표면 가공제 적용)

  • 이용우;이광길;여주홍;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

Solar-driven steam flow for effective removal of particulate matters (PM) (태양열 기반 증기 유동을 이용한 미세먼지 제거 연구)

  • Kim, Jeongju;Kim, Jeong Jae
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.130-135
    • /
    • 2021
  • Water vapor has received worldwide large attention due to its broad technological implications ranged from resource production and environmental remediation. Especially, one of the typical areas where the water vapor is important is the removal of PM (particulate matter) which causes a critical hazard to human health. However, most vapor-based PM removal methods are limited in removing PM2.5 by using relatively large water droplets and consume large energy. Here, we propose a superhydrophilic thermally-insulated macroporous membrane to generate steam flow. The water vapor directly captures PM with steam flow and hygroscopic characteristic of PM. The steam, the cluster of water vapor, from the membrane gives rise to high removal efficiencies compared to those of the control case without light illumination. To reveal PM removal mechanism, the steam flow and PM were quantitatively analyzed using PIV measurement. The proposed steam generator could be utilized as an economical and ecofriendly platform for effective PM removal at a fairly low cost in a sustainable, energy-free, and harmless-to-human manner.

Characterization of the Physicochemical Properties of KR-31378

  • Sohn, Young-Taek;Park, Bo-Ye
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.526-531
    • /
    • 2003
  • KR-31378 is a new drug candidate intended for the use in the prevention of ischemia-reperfusion damage. The objective of this preformulation study was to determine the physicochemical properties of KR-31378. The n-octanol to water partition coefficients of KR-31378 were 0.0504 at pH 3 and 0.8874 at pH 10. Accelerated stability of KR-31378 in solution and solid state was studied at 5, 40, $60^{\circ}C$. The stability testing indicated that the t90 for the drug in solid was estimated to be 2 years and 128.6 days at $25^{\circ}C$, while the that in aquesou solution was 68.6 days at $25^{\circ}C$. The KR-31378 was also found to be unstable under the relative humidity of 76%, probably because of the hygroscopic nature of the drug. In order to study compatibility of KR-31378 with typical excipients, potential change in differential scanning calorimetry spectrum was studied in 1:1 binary mixtures of KR-31378 and Aerosil, Avicel, Eudragit, lactose, PEG, talc, CMC, PVP, starch. As a result, CMC, PVP, and starch were found to be incompatible with KR-31378, indicating the addition of these excipients may complicate the manufacturing of the formulation for the drug. Particle size distribution of KR-31378 powder was in the size range of 9-93 $\mu$ m with the mean particle size of 37.9 $\mu$ m. The flowability of KR-31378 was apparently inadequate, indicating the granulation may be necessary for the processing of the drug to solid dosage forms. Crystallization of the drug with a number of organic solvents did not lead a crystalline polymorphism. In addition, dissolution of the drug from the powder was adequately rapid at $37^{\circ}C$ in water.