• 제목/요약/키워드: hygromycin

검색결과 116건 처리시간 0.03초

Glutathione Reductase 유전자의 도입에 의한 오차드그래스의 형질전환 (Transformation of Orchardgrass (Dactylis glomerata L.) with Glutathione Reductase Gene)

  • 이효신;배은경;김기용;원성혜;정민섭;조진기
    • 한국초지조사료학회지
    • /
    • 제21권1호
    • /
    • pp.21-26
    • /
    • 2001
  • 환경 스트레스에 의해 야기되는 활성 산소종에 의한 피해에 내성을 가지는 목초의 개발을 위하여 오차드그래스의 배반 조직 유래의 캘러스에 배추유래의 cytosolic glutathione reductase 유전자(BcGRl)를 Agrobucterium tumefaciens EHA101을 매개로 형질전환시켰다. Hygromcin으로 선발된 캘러스로부터 재분화된 식물체는 야생형과 비교하여 형태적으로 차이를 나타내지 않았다. PCR 및 Southern blot 분석을 통하여 형질전환 식물체의 염색체 내에 BcGRl 유전자가 integration 되었음을 확인하였다. 오차드그래스의 잎으로부터 total RNA를 분리하여 Northern blot 분석을 실시한 결과, 도입된 유전자가 형짙전환 식물체 내에서 지속적으로 발현된다는 것을 확인하였다.

  • PDF

The Function of ArgE Gene in Transgenic Rice Plants

  • Guo, Jia;Seong, Eun-Soo;Cho, Joon-Hyeong;Wang, Myeong-Hyeon
    • 한국자원식물학회지
    • /
    • 제20권6호
    • /
    • pp.524-529
    • /
    • 2007
  • We carried out to study the function of ArgE in transgenic rice plants, which were confirmed by PCR analysis and hygromycin selection. Transgenic rice plants were with selectable marker gene(HPT) inserted in genome of the rice. Southern analysis with hpt probe confirmed by two restriction enzymes that copy numbers of the selectable gene was introduced into the plant genome. We displayed that the relationship between drought stress and ArgE gene with the overexpressing rice plants. From this result, we observed that the degree of leaves damage has no difference in control and transgenic lines. The total RNAs were extracted from 6 weeks-seedling in normal condition in order to examine their expression levels with ArgE-overexpressed transgenic rice. In particular, expression patterns of genes encoding enzymes involved in abiotic stress, including drought and salt stresses. OsGF14a and OsSalt were investigated by reverse transcription-PCR(RT-PCR). Expression levels of the OsSalt gene decreased significantly in transgenic rice plants compared to control plant. However, ion leakage measurement did not demonstrate any leaves damage change between control and ArgE transgenic plants exposure to mannitol treatment. These results suggest that expression of the ArgE is not involved in tolerance for drought stress in rice but may playa role of signaling networks for salt-induced genes.

Growth, Morphology, Cross Stress Resistance and Antibiotic Susceptibility of K. pneumoniae Under Simulated Microgravity

  • Kalpana, Duraisamy;Cha, Hyo-Jung;Park, Moon-Ki;Lee, Yang-Soo
    • 한국환경과학회지
    • /
    • 제21권3호
    • /
    • pp.267-276
    • /
    • 2012
  • Spaceflights results in the reduction of immune status of human beings and increase in the virulence of microorganisms, especially gram negative bacteria. The growth of Klebsiella pneumoniae is enhanced by catecholamines and during spaceflight, elevation in the levels of cortisols occurs. So it is necessary to know the changes in physiology, virulence, antibiotic resistance and gene expression of K. pneumoniae under microgravity conditions. The present study was undertaken to study effect of simulated microgravity on growth, morphology, antibiotic resistance and cross stress resistance of K. pneumoniae to various stresses. The susceptibility of simulated microgravity grown K. pneumoniae to ampicillin, penicillin, streptomycin, kanamycin, hygromycin and rifampicin were evaluated. The growth of bacteria was found to be fast compared with normal gravity grown bacteria and no significant changes in the antibiotic resistance were found. The bacteria cultured under microgravity conferred cross stress resistance to acid, temperature and osmotic stress higher than the normal gravity cultured bacteria but the vice versa was found in case of oxidative stress.

An In Vitro Assay to Screen for Translation Inhibitors

  • Song, Chin-Hee;Paik, Hyoung-Rok;Seong, Chi-Nam;Choi, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1646-1649
    • /
    • 2006
  • Protein synthesis is the ultimate outcome of gene expression which, in turn, is regulated by several translation factors. We attempted to identify substances that can inhibit the translation process in vitro when the outcome protein is luciferase. To this end, we developed a sensitive cell-free protein synthesis assay using luciferase as the reporter. The synthesis of luciferase increased proportionately as mRNA was added to a $15-{\mu}l$reaction medium in concentrations raging from 5 ng to 500 ng. The maximum amount of luciferase was synthesized when the media were incubated at $25^{\circ}C$ for 40 min. The concentration of each compound that inhibited luciferase production by 50% ($IC_{50}$) was calculated. Hygromycin, puromycin, and cycloheximide yielded an $IC_{50}$ of 0.008, 0.8, and $0.7{\mu}g/ml$, respectively. A filtrate of Streptomyces spp. isolates inhibited protein synthesis up to S-fold when added to the in vitro translation assay mixture.

감자갈색잎점무늬병균(Alternaria alternata)에 대한 버섯 배양액 추출물 15종의 생장 억제 효과 (Inhibitory effects of 15 mushroom culture extracts on the growth of Alternaria alternata causing potato brown spot)

  • 박현진;누옌티김하;박숙영;최재혁
    • 한국버섯학회지
    • /
    • 제21권4호
    • /
    • pp.195-199
    • /
    • 2023
  • The fungus Alternaria alternata, responsible for causing brown to black spotting on numerous fruits and vegetables globally, was identified in 2022 as the causative pathogen of brown spot disease in potatoes in Korea. In pursuing potential inhibitors against A. alternata growth, we evaluated 15 mushroom culture filtrates: eight from Trametes spp. and seven from Polyporus spp., known for their antibacterial and anticancer properties. Antifungal activity was assessed by exposing each filtrate to A. alternata on a paper disc. Four filtrates displayed inhibitory action against the fungus, albeit with mild effects. Our findings highlight the potential of Trametes and Polyporus fungi as emerging antifungal candidates, offering promise in preventing potato brown spots.

Development of Transgenic Tall Fescue Plants from Mature Seed-derived Callus via Agrobacterium-mediated Transformation

  • Lee, Sang-Hoon;Lee, Dong-Gi;Woo, Hyun-Sook;Lee, Byung-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권10호
    • /
    • pp.1390-1394
    • /
    • 2004
  • We have achieved efficient transformation system for forage-type tall fescue plants by Agrobacterium tumefaciens. Mature seed-derived embryogenic calli were infected and co-cultivated with each of three A. tumefaciens strains, all of which harbored a standard binary vector pIG121Hm encoding the neomycin phosphotransferase II (NPTII), hygromycin phosphotransferase (HPT) and intron-containing $\beta$-glucuronidase (intron-GUS) genes in the T-DNA region. Transformation efficiency was influenced by the A. tumefaciens strain, addition of the phenolic compound acetosyringone and duration of vacuum treatment. Of the three A. tumefaciens strains tested, EHA101/pIG121Hm was found to be most effective followed by GV3101/pIG121Hm and LBA4404/pIG121Hm for transient GUS expression after 3 days co-cultivation. Inclusion of 100 $\mu$M acetosyringone in both the inoculation and co-cultivation media lead to an improvement in transient GUS expression observed in targeted calli. Vacuum treatment during infection of calli with A. tumefaciens strains increased transformation efficiency. The highest stable transformation efficiency of transgenic plants was obtained when mature seed-derived calli infected with A. tumefaciens EHA101/pIG121Hm in the presence of 100 $\mu$M acetosyringone and vacuum treatment for 30 min. Southern blot analysis indicated integration of the transgene into the genome of tall fescue. The transformation system developed in this study would be useful for Agrobacterium-mediated genetic transformation of tall fescue plants with genes of agronomic importance.

가토 윤활막 세포에서 EBV-Based 플라스미드를 사용한 효율적인 유전자 발현 (Highly Efficient Gene Expression in Rabbit Synoviocytes Using EBV-Based Plasmid)

  • 김진영;오상택;윤지희;이숙경
    • IMMUNE NETWORK
    • /
    • 제4권3호
    • /
    • pp.190-197
    • /
    • 2004
  • Background: Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic synovial inflammation which leads to joint destruction. Gene therapy of RA targets the players of inflammation or articular destruction. However, viral vectors have safety problems and side effects, while non-viral vectors suffer from inefficient gene transfer and fast loss of gene expression. To overcome the limits of non-vial vectors, an EBV-based plasmid which is known to exert prolonged high level gene expression can be used. Methods: pEBVGFP, pEBVIL-10, and pEBVvIL-10 were constructed by cloning GFP, IL-10, and vIL-10 genes into an EBV-based plasmid, respectively. The pGFP was used as a control plasmid. Each constructs were lipofected into HIG-82 rabbit synoviocytes. The expression of GFP was monitored by FACS and confocal microscopy. IL-10 and vIL-10 expressions were measured by ELISA. Results: GFP expression 2 days after transfection was achieved in 33.2% of cells. GFP-expressing cells transfected with pGFP decreased rapidly from 4 days after transfection and disappeared completely by 11 days. Cells transfected with pEBVGFP began to decrease slowly from 4 days. But GFP expression was detected for over 35 days. In addition, HIG-82 cells transfected with pEBVIL-10 ($44.6{\pm}1.5ng/ml$) or pEBVvIL-10 ($51.0{\pm}5.7ng/ml$) secreted these cytokines at high levels. High level cytokine production by hygromycin selection was maintained at least for up to 26 days after transfection. Conclusion: These results suggest that the EBV-based plasmid has a potential to improve non-viral gene transfer system and may be applicable to treat RA without the drawbacks of viral vectors.

Genetically Modified Human Embryonic Stem Cells Expressing Nurr1 and Their Differentiation into Tyrosine Hydroxylase Positive Cells in vitro.

  • Cho, Hwang-Yoon;Lee, Chang-Hyun;Kil, Kwang-Soo;Yoon, Ji-Yeon;Shin, Hyun-Ah;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, SePill;Lim, Jin-Ho
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.104-104
    • /
    • 2003
  • As an effort to direct differentiation of human embryonic stem (hES, MB03) cells to dopamine-producing neuronal cells, Nurr1 was transfected using conventional transfection protocol into MB03 and examined the expression of tyrosine hydroylase (TH) after differentiation induced by retinoic acid (RA) and ascorbic acid (AA). Experimentally, cells were transfected with linearized Nurr1 cDNA in pcDNA3.1 (+)-hygovernight followed by selection in medium containing hygromycin-B (150 $\mu$/ml). Expression of Nurr1 mRNA was confirmed by RT-PCR and protein by immunocytochemistry in the drug resistant clones. In order to study the effect of Nurr1 protein on the differentiation pattern of ES cells, one of the positive clones (MBNr24) was allowed to form embryoid body (EB) for 2 days and were induced to differentiate for another 4 days using RA (1 $\mu M$) and AA (50 mM) (2-/4+ protocol) followed by selection in N2 medium for 10 or 20 days. After 10 days in N2 medium, cells immunoreactive to anti-GFAP, anti-TH, or anti-NF200 antibodies were 38.8%, 11%, and 20.5%, respectively. After 20 days in N2 medium, cells expressing GFAP, TH, or NF200 were 28%, 15% and 44.8%, respectively but approximately 9% of MB03 expressed TH protein when the cells were induced to differentiate using a similar prorocol, These results suggest that ectopic expression of Nurr1 enhances generation of TH+ cells as well as neuronal cells when hES cells were differentiated by 2-/4+ protocol.

  • PDF

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.