• Title/Summary/Keyword: hydroxypyruvate reductase

Search Result 2, Processing Time 0.018 seconds

Polyamine, Cytochrome c and Enzymes Related to the Utilization of Methanol in Methylobacterium extorquens AMI Growing at Different pHs (상이한 수소이온농도에서 성장하는 Methylobacterium extorquens AM1의 메탄올 이용 관련효소와 Cytochrome c 및 폴리아민)

  • 박기정;이순희;김영민
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.533-538
    • /
    • 1992
  • The generation time of Methylobacterium extorquens AMI growing on methanol at pH 5.5 and 7.0 was found to be 23 hand 8.3 h. respectively. The bacterium grown at pH 7.0 were found to contain more amounts of spermidine and putrescine than the cell grown at pH 5.5. Cells grown at both conditions exhibited strong methanol dehydrogenase (MDH) activity at the mid-exponential growth phase. The amounts of MDH. however. were found to be almost equal through all gro~1h phases. Cells growing at the stationary phase contained large amounts of cytochrome c. The cytochrome c content was higher in cells growing at pH 7.0 than the cells growing at pH 5.5. Cells growing at pH 5.5 in the presence of putrescine or spermidine contained increased amounts of putrescine. The level of spermine, however. was decreased and that of spermidine was not changed. Spermine added into the medium was found to have no effect on the level of cellular polyamines. Putrescine or spermidine added into the medium stimulated MDH and hydroxypyruvate reductase activities. but did not affect the contents of MDH and cytochrome c. It was found that preincubation of cell-free extracts with polyamines does not stimulate MDH and hydroxypyruvate reductase activities.

  • PDF

Comparative Genomic Analysis of Lactobacillus plantarum GB-LP1 Isolated from Traditional Korean Fermented Food

  • Yu, Jihyun;Ahn, Sojin;Kim, Kwondo;Caetano-Anolles, Kelsey;Lee, Chanho;Kang, Jungsun;Cho, Kyungjin;Yoon, Sook Hee;Kang, Dae-Kyung;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1419-1427
    • /
    • 2017
  • As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum, which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.