• Title/Summary/Keyword: hydroxyl-terminated polyether

Search Result 4, Processing Time 0.017 seconds

Impact Sensitivity of HTPE & HTPB Propellants using Friability Test (Friability 시험을 이용한 HTPE 및 HTPB 추진제의 충격 민감도)

  • Kim, Chang-Kee;Yoo, Ji-Chang;Min, Byoung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • Hydroxyl terminated polyether(HTPE) propellants have been developed recently as possible replacements for HTPB/AP propellants currently used in a number of tactical rocker motor. As analyzing friability of HTPE and HTPB propellants in this study, the following results could be derived. The friability of the tested propellants depended on its binder contents, mechanical property, and burning rate. It was decreased as burning rate was lowered and toughness was increased.

Novel Polyurethane Binder for Propellant based on Hydroxyl-terminated Copolyether (폴리에테르 공중합체 디올(HTPE)을 사용한 새로운 추진제용 폴리우레탄 바인더)

  • Song Jong-Kwon;Pan Xiao;Lee Bum-Jae;Jeon Jun-Pyo;Hwang Gab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.417-421
    • /
    • 2005
  • Novel two synthetic technics using cationic ring-opening copolymerization of tetrahydrofuran (THF) and ethylene oxide (EO), or just polymerized EO on Poly-THF, could lead to random hydroxyl-terminated poly(EO-ran-THF) or tri-block PEG-PTHF-PEC, respectively. These reactions were carried out using $BF_3O(C_2H_5)_2$ as catalyst, 1,4-butanediol or PTHF as diol initiator. Copolymer structures were controlled by monomer feed ratio, or initial PTHF and EO monomer added amount. The molecular weight of polymer was merely dependant on the ratio of [monomer]/[diol], but not on catalyst. Well-defined random and block hydroxyl-terminated copolyether was found to be as the prepolymer for the propellant binder from the experiment to polyurethane with them.

  • PDF

Novel Hydroxy-terminated Copolyether-based Polyurethane system for Propellant Binder (새로운 폴리에테르 공중합체 디올(HTPE)을 사용한 추진제용 폴리우레탄 바인더)

  • Yoo Ho-Joon;Song Jong-Kwon;Lee Bum-Jae;Hwang Gab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.229-232
    • /
    • 2006
  • Two novel synthetic route proposed for Hydro-Terminated Poly(EO-ran-THF) and tri-block(PEC-PTHF-PEG) copolymer by cationic ring-opening polymerization of tetrahydrofuran(THF) and ethylene oxide(EO) and just by polymerization of EO on poly-THF, respectively. Polyurethane was synthesized from random and tri-block HTPE using N-100/IPDI mixture as curing agent, and TPB(Triphenylbismuth) as catalyst. The mechanical properties of resultant polyurethane after mixing with various ratio of isocyanate was also investigated. Finally, the post treatment process of HTPE based on amount of catalyst used in the synthesis was studied, to evaluate the optimum curing condition for the polyurethane propellant binder.

  • PDF

Slow Cook-Off Test and Evaluation for HTPE Insensitive Propellants (HTPE 둔감추진제 완속가열 시험평가)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Kim, Jun-Hyung;Lee, Do-Hyung;Min, Byung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • This study was carried out to investigate the thermal decomposition and execute EIDS slow cook-off test for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid phase change(II$\rightarrow$I) of AN was followed by the exothermic process of BuNENA/AN mixture up to $200^{\circ}C$. In EIDS slow cook-off tests, HTPE 001 and HTPE 002 reacted at around $250^{\circ}C$ and $152^{\circ}C$ respectively, and both of them showed sudden temperature increase curves at $115^{\circ}C$. The critical temperatures, $T_c$, of thermal explosion for the propellants HTPE 001 and HTPE 002, were obtained from both the non-isothermal curves at various heating rates and Semenov's thermal explosion theory. Kissinger's method that was used to calculate $T_c$ was also employed to obtain the activation energies for thermal decompositions.