• Title/Summary/Keyword: hydroxyapatite

Search Result 857, Processing Time 0.023 seconds

Formation of Oriented Hydroxyapatite Rods by Hydrothermal Treatment of Calcite Single Crystal

  • Kim, Ill-Yong;Kikuta, Koichi;Ohtsuki, Chikara
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.397-402
    • /
    • 2012
  • Morphological control on hydroxyapatite crystals has attractive prospects in research to clarify the effects of crystal planes on biological performance. Hydrothermal processing is known as a typical type of processing for fabricating well-grown crystals with unique morphology. The purpose of the present study is to examine the feasibility of well-crystallized crystals with oriented structures through hydrothermal treatment of calcite. A single crystal of calcite was applied to hydrothermal treatment in a phosphate solution at $160^{\circ}C$. Rod-shaped hydroxyapatite crystals with micrometer-size were formed on the {100} face of calcite after treatment, while nanometer-sized hydroxyapatite crystals were formed on the (111). The hydroxyapatite crystals formed on each plane were not morphologically changed with increasing treatment periods. An oriented structure of rod-shaped hydroxyapatite was constructed after hydrothermal treatment of {100} planes on the calcite single, while such orientation was not observed on the (111) plane after the treatment. The layer of hydroxyapatite formed on the {100} plane was thicker than that of the (111) plane. The {100} plane of calcite shows a higher reactivity than that of the (111) plane, which results in rapid crystal growth of hydroxyapatite. The difference in the morphology of the formed hydroxyapatite was governed by the reactivity of each crystal plane exposed to the surrounding solution.

Fabrication of functionally graded materials of hydroxyapatite and titanium (Hydroxyapatite 와 titanium의 경사 기능 재료 제조)

  • 김성진;박지환;조경식;박노진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.144-148
    • /
    • 2002
  • Hydroxyapatite/titanium composites were prepared as 4-layered functionally graded materials (FGM) using a spark plasma sintering (SPS) apparatus. The maximum density and the biaxial strength of hydroxyapatite/titanium composites were achieved by SPS with a holding time 8 minutes at $1200^{\circ}C$. However, the hydroxyapatite was decomposed tetracalcium phosphate (TetCP) at $1100^{\circ}C$, and calcium titanate compounds ($CaTiO_3$) were formed. When titanium was added to hydroxyapatite, decomposition of hydroxyapatite was occurred easily at the low temperature.

Microstructure and Mechanical Strength of Hardened Paste of Hydroxyapatite Cement Containing Whisker Phase (휘스커상을 함유한 수산화아파타이트시멘트 경화체의 미구조-강도 특성)

  • 손영도;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1342-1349
    • /
    • 1999
  • In order to improve the density and the mechanical strength without change in chemical composition the hardened pastes of hydroxyapatite cement were reinforced with powders and/or whiskers of hydroxyapatite. The powders behaved as a seed of hydroxyapatite formation rather than a filler while the whiskers were mrerly dispersed in matrix and capillary pores of the hardened bodies leading to increase in mechanical strength. But the increase in strength But the increase in strength was nnt enough owing to the lack of homogeneous dispersion of the fibers. The highest diametral tensile strength of 18.5 MPa was measured at the hardened hydroxyapatite body in which well-dispersed whisker phase formed uniformly during hydro-thermal curing of power-added and dry-formed hydroxyapatite cement.

  • PDF

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(II) - The Sintering Properties of Hydroxyapatite Treated with Wet Milling Process - (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제2보)-습식법에 의한 Hydroxyapatite 소결체의 특성-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jeon, You-Jin;Lee, Eung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1000-1005
    • /
    • 1997
  • The properties of ceramics by solid-state reaction with hydroxyapatite[$Ca_{10}(PO_4)_6(OH)_2$], which was isolated from tuna bone by wet milling process were investigated. The bulk density $2.93g/cm^3$ at $1350^{\circ}C$ was close to the calculated density $3.21g/cm^3$. On X-ray measurements, the major phases were identified as hydroxyapatite at below $1300^{\circ}C$, but the whitlockite [$Ca_3(PO_4)_2$] phases were appeared due to a decomposition of hydroxyapatite with temperature. The microstructures of sintering specimens were shown as small closed pores between grain boundaries. The mean bending strength of the sintered hydroxyapatite by solid-state reaction is about 58 MPa and this value is higher than that of the articular cartilage maximum strength, 40MPa.

  • PDF

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(III) - SEM Photographs of Bonding Properties between Hydroxyapatite Ceramics Composites in the Simulated Body Fluid- (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제3보) -인공체액에서의 Hydroxyapatite 세라믹 복합체간의 결합의 전자현미경 관찰-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jean, You-Jin;Lee, Eung-Ho;Park, In Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.322-329
    • /
    • 1998
  • Chemical bonding was investigated in the simulated body fluid of several selected hydroxyapatite-containing composites. The hydroxyapatite-containing composites chemically bonded with each other in the simulated body fluid after 4 weeks. Bioglass was strongly bonded in the simulated body fluid, but bonding strength was not depended on composition. Their composite bodies were chemically bonded by heterogeneous nucleation and growth at the interfaces of the specimens in the simulated body fluid.

  • PDF

Synthesis and Characterization of Silicon Substituted Hydroxyapatite (Si을 함유하는 Hydroxyapatite의 합성 및 특성 분석)

  • 김수룡;김영희;정상진;류도형
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1132-1136
    • /
    • 2001
  • A silicon-substituted hydroxyapatite was prepared using tetraethylorthosilicate as a silicon source to obtain a biomaterial having an improved biocompatibility. From the XRD analysis, it was confirmed that a single-phase hydroxyapatite containing silicon was formed without revealing the presence of extra phases related to silicon oxide or other calcium phosphate species. Silicon content was up to 3.32% by weight. Through $\^$29/Si MAS NMR investigation we could confirm the presence of tetrahedral silicate in the framework of hydroxyapatite structure. Substitution of silicon into the hydroxyapatite framework (Ca$\_$10/(PO$_4$)$\_$6-x/(SiO$_4$)$\_$x/(OH)$\_$2-x/ reduced the amount of hydroxyl group to compensate for the extra negative charge of the silicate group, which is confirmed by FT-IR.

  • PDF

Microsotructure Designed Porous Apatite Ceramics Prepared by Hydrothermal Method

  • Ioku, Koji;Fukuhara, Michiko;Fujimori, Hirotaka;Goto, Seishi
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.162-164
    • /
    • 1999
  • Microsotructure designed porous ceramics of calcium hydroxyapatite $(Ca_{10}(PO_4)_6(OH)_2)$ were prepared by hydrothermal method. The particle size, shape, and the micro-pore size of the porous hydroxyapatite ceramics could becontrolled. The hydroxyapatite was non-stoichiometric apatite with calcium deficient compositions (Ca/P ratio < 1.67). The composition of non-stoichiometric hydroxyapatite ceramics could be controlled from 1.50 to 1.63 in Ca/P ratio. The hydroxyapatite ceramics preparedc at $105^{\circ}C$ under the saturated vapor pressure for 20h were composed of rod-shaped crystals with about 10$\mu\textrm{m}$ in length with the mean aspect ratio of 40. The porous ceramics of calcium deficient hydroxyapatite had about 45% porosity with the inter-connecting pore structure. Porous hydroxyapatite ceramics prepared hydrothermally had the compressive strength of about 10 to 30 MPa. In addition, porous ceramics of $\beta$-tricalcium phosphate ($\beta-Ca_3(PO_4)_2$) were prepared from the calcium deficient hydroxyapatite.

  • PDF

The Binding Properties of Fructosyltransferase on the Surface of Hydroxyapatite (하이드록시아파타이트 표면에서의 플럭토즈 전이효소의 결합 특성)

  • Jang, Ki-Hyo;Park, Young Min
    • Journal of dental hygiene science
    • /
    • v.2 no.2
    • /
    • pp.121-124
    • /
    • 2002
  • The fructan-producing enzyme, fructosyltransferase (FTF), was immobilized on the surface of 4 differents hydroxyapatites by simple incubation. Among the resins, the Type I (${20{\mu}m}$) hydroxyapatite gave the highest yield in terms of immobilization yield and enzyme activity. The fructan synthesis activity of the immobilized FTF was similar with that of the free enzyme, and were about 70-80% on fructose basis with substrate at 100~200 g/L. The binding time between the hydroxyapatite and FTF was terminated within 2 h, and the binding capacity of the Type I ($20{\mu}m$) hydroxyapatite was above 60 U of FTF/g of the resin. By immobilization, the FTF stability against proteolysis, was greatly improved by approximately 3-4 fold. Thus, the present study demonstrated that immobilization of FTF on the surface of the hydroxyapatite occurrs in simple reaction and the binding strength is strong enough to produce the fructan.

  • PDF

Pulsed laser ablation of hydroxyapatite in ethanol

  • Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.219-223
    • /
    • 2014
  • Pulsed laser ablation in liquid medium was successfully employed to synthesize hydroxyapatite colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the hydroxyapatite nanoparticles were investigated in detail. The obtained hydroxyapatite nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were discussed with explosive ejection mechanism by investigating change of surface morphology on target. The analytical results of XPS, FT-IR and Raman spectroscopy confirms that the stoichiometry and bonding properties of the hydroxyapatite nanoparticles are in good agreement with reported bulk hydroxyapatite materials.

Study on the Microstructure of the Hydroxyapatite Injected into the Hole of Teeth. (치아 내 수산화아파타이트(HAp) 삽입 후 미세구조에 관한 연구)

  • Ryu Su Chak
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.786-789
    • /
    • 2004
  • Hydroxyapatite powder was injected into thehole of teeth. The microstructure of teeth and HAp were observed after immersed in $9\%$ salin solution at $37^{\circ}C$ from 1month to 6 months. The junction morphology of hydroxyapatite and tooth was enhanced and particle size of hydroapatite was decreased with increasing time. The firm waxy body was found due to the hardening of hydroxyapatite fine powder resulting from the destruction of initial powder with swelling. It is suggested that the junction morphology of hydroxyapatite and tooth was observed due to the $Ca^{2+}$ ion shift of hydroxyapatite.