• Title/Summary/Keyword: hydrothermally metasomatic reaction

Search Result 1, Processing Time 0.018 seconds

Phase equilibria between coexisting minerals in the talc ores and process of talc formation in the Daeheung Talc Deposits, Korea (대흥활석광상에 있어서 공존하는 광물의 상평형과 활석화 과정)

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.156-170
    • /
    • 1994
  • The talc ore deposits can be divided into chloritic and dolomitic ores according to mineral assemblages. The former is mainly composed of chlorite and talc accompanied with dolomite, muscovite and opaque mineral, and the latter of dolomite and talc with serpentine, calcite and magnesite in places. Talc was originated from chlorite and serpentine. Carbonate minerals were formed either directly from the introduced hydrothermal solution or secondarily as a by-product of steatitization of chlorite and serpentine. The process of talc formation may be governed by the chemical composition of the host rocks and the amount and/or chemical composition of the hydrothermal solution which may be different in places. However, the representative reactions producing talc from chlorite and serpentine are as follows : (1) chlorite+$Mg^{++}+Si^{4+}+H_2O$=talc, (2) chlorite+$Mg^{++}+Si^{4+}+Ca^{++}+CO_2+O_2+H_2O$=talc+ dolomite+ magnesite, and (3) serpentine +$Mg^{++}+Fe^{++}+Si^{4+}+Ca^{++}+CO_2+H_2O$=talc+dolomite. The reactions indicate that the carbonate minerals can be formed when the hydrothermal solution have high $fO_2$ and $fCO_2$. The steatitization might be proceeded by the hydrothermally metasomatic reaction between chlorite schist or chlorite gneiss intercalated in the granitic gneiss and hydrothermal solution accompanied to the wet granitization.

  • PDF